Три основных теоремы о пределах — различия между версиями
(→Пример) |
Komarov (обсуждение | вклад) м (ϕ→φ, -→—) |
||
| Строка 17: | Строка 17: | ||
Последовательность <tex> a_n </tex> ''ограничена'', если <tex> \exists a \in \mathbb R: |a_n| \le a </tex> | Последовательность <tex> a_n </tex> ''ограничена'', если <tex> \exists a \in \mathbb R: |a_n| \le a </tex> | ||
| − | <tex> a_n </tex> - ''ограничена сверху'', если <tex> \exists a \in \mathbb R: a_n \le a </tex> | + | <tex> a_n </tex> {{---}} ''ограничена сверху'', если <tex> \exists a \in \mathbb R: a_n \le a </tex> |
| − | <tex> a_n </tex> - ''ограничена снизу'', если <tex> \exists a \in \mathbb R: a_n \ge a </tex> | + | <tex> a_n </tex> {{---}} ''ограничена снизу'', если <tex> \exists a \in \mathbb R: a_n \ge a </tex> |
}} | }} | ||
| Строка 25: | Строка 25: | ||
|author=Вейерштрасс | |author=Вейерштрасс | ||
|statement= | |statement= | ||
| − | Пусть <tex> a_n \uparrow </tex> и <tex> a_n </tex> ограничена сверху. Тогда она сходится. (Аналогично, если <tex> a_n \downarrow </tex>, <tex> a_n </tex> - ограничена снизу). | + | Пусть <tex> a_n \uparrow </tex> и <tex> a_n </tex> ограничена сверху. Тогда она сходится. (Аналогично, если <tex> a_n \downarrow </tex>, <tex> a_n </tex> {{---}} ограничена снизу). |
|proof= | |proof= | ||
| − | <tex> \exists d \in \mathbb R: d = \sup\limits_{n \in \mathbb N} a_n </tex>, поскольку <tex> a_n </tex> - ограничена сверху, и <tex> d </tex> - конечен, так как <tex> a_n </tex> - ограничена сверху. | + | <tex> \exists d \in \mathbb R: d = \sup\limits_{n \in \mathbb N} a_n </tex>, поскольку <tex> a_n </tex> {{---}} ограничена сверху, и <tex> d </tex> {{---}} конечен, так как <tex> a_n </tex> {{---}} ограничена сверху. |
По [[Грани числовых множеств#Определения|определению]] <tex> \sup a_n </tex>: | По [[Грани числовых множеств#Определения|определению]] <tex> \sup a_n </tex>: | ||
| Строка 71: | Строка 71: | ||
{{Определение | {{Определение | ||
| − | |definition= Если дана последовательность <tex> \{ a_n \} </tex> и <tex> \ | + | |definition= Если дана последовательность <tex> \{ a_n \} </tex> и <tex> \varphi: \mathbb N \rightarrow \mathbb N, \varphi \uparrow </tex> (строго возрастает), |
| − | тогда последовательность <tex> b_n = a_{\ | + | тогда последовательность <tex> b_n = a_{\varphi_(n)} </tex> называется '''подпоследовательностью''' исходной последовательности. |
}} | }} | ||
| Строка 79: | Строка 79: | ||
<tex> b_n = a_{2n} : b_1 = a_2, b_2 = a_4, \dots </tex> | <tex> b_n = a_{2n} : b_1 = a_2, b_2 = a_4, \dots </tex> | ||
| − | В силу строго возрастания <tex> \ | + | В силу строго возрастания <tex> \varphi \uparrow </tex>, очевидно, что если <tex> a_n \rightarrow k </tex>, то <tex> a_{\varphi(n)} \rightarrow k </tex>. Любая подпоследовательность сходится к тому же пределу. |
{{Теорема | {{Теорема | ||
| Строка 86: | Строка 86: | ||
|proof= Применим способ половинного деления, основанный на принципе вложенных отрезков: если строить систему отрезков путем деления предыдущего отрезка пополам, то получится система вложенных отрезков, и так до бесконечности.. | |proof= Применим способ половинного деления, основанный на принципе вложенных отрезков: если строить систему отрезков путем деления предыдущего отрезка пополам, то получится система вложенных отрезков, и так до бесконечности.. | ||
| − | Пересечение всех отрезков - 1 точка (по свойству системы вложенных отрезков). | + | Пересечение всех отрезков {{---}} 1 точка (по свойству системы вложенных отрезков). |
Раз <tex> a_n </tex> ограничена, то <tex> \forall n: a_n \in \Delta_0 = [c, d] </tex> | Раз <tex> a_n </tex> ограничена, то <tex> \forall n: a_n \in \Delta_0 = [c, d] </tex> | ||
| Строка 124: | Строка 124: | ||
=Теорема Коши= | =Теорема Коши= | ||
| − | Пункт третий связан с одним из фундаментальных свойств числовой оси - ''полнотой''. | + | Пункт третий связан с одним из фундаментальных свойств числовой оси {{---}} ''полнотой''. |
{{Определение | {{Определение | ||
| Строка 148: | Строка 148: | ||
Положим <tex> \varepsilon = 1 \Rightarrow \exists N: \forall n \ge N: |a_n - a_N| < 1 </tex>. | Положим <tex> \varepsilon = 1 \Rightarrow \exists N: \forall n \ge N: |a_n - a_N| < 1 </tex>. | ||
| − | Вне <tex> (a_N - 1, a_N + 1) </tex> может оказаться самое большее <tex> a_1, a_2, ..., a_{N - 1} \Rightarrow </tex> последовательность <tex> \{ a_n \} </tex> - ограничена. Раз она ограничена, по теореме Больцано, в ней можно выделить сходящуюся подпоследовательность. | + | Вне <tex> (a_N - 1, a_N + 1) </tex> может оказаться самое большее <tex> a_1, a_2, ..., a_{N - 1} \Rightarrow </tex> последовательность <tex> \{ a_n \} </tex> {{---}} ограничена. Раз она ограничена, по теореме Больцано, в ней можно выделить сходящуюся подпоследовательность. |
<tex> \exists a_{n_k} \rightarrow a </tex> при <tex> k \rightarrow \infty (a_{\varphi(n)} = a_{n_k}) </tex>. | <tex> \exists a_{n_k} \rightarrow a </tex> при <tex> k \rightarrow \infty (a_{\varphi(n)} = a_{n_k}) </tex>. | ||
| Строка 166: | Строка 166: | ||
<tex> \{ a_n \} </tex> сходится <tex> \iff \{ a_n \} </tex> сходится в себе. | <tex> \{ a_n \} </tex> сходится <tex> \iff \{ a_n \} </tex> сходится в себе. | ||
| − | Такое свойство принято называть полнотой вещественной оси, также - критерий Коши существования предела числовой последовательности. | + | Такое свойство принято называть полнотой вещественной оси, также {{---}} критерий Коши существования предела числовой последовательности. |
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] | ||
Версия 22:14, 15 января 2011
Лекция от 27 сентября 2010.
Теорема Вейерштрасса
| Определение: |
| Последовательность ( возрастает), если Последовательность ( убывает), если |
| Определение: |
| Последовательность ограничена, если
— ограничена сверху, если — ограничена снизу, если |
| Теорема (Вейерштрасс): |
Пусть и ограничена сверху. Тогда она сходится. (Аналогично, если , — ограничена снизу). |
| Доказательство: |
|
, поскольку — ограничена сверху, и — конечен, так как — ограничена сверху. По определению :
Так как , то Итак: |
Пример
Разделив данное равенство на , получаем:
Сравнивая эти две суммы, можно заметить, что все слагаемые положительны, и каждое текущее слагаемое второй суммы больше соответствующего слагаемого первой суммы, из чего следует, что
Теперь покажем, что ограничена.
Если вернуться к , то видно, что все скобки не превосходят 1:
Пользуясь неравенством , получаем:
(по формуле геометрической прогрессии: ).
По теореме Вейерштрасса, . Его обозначают числом . Также только что мы показали, что .
Теорема Больцано
| Определение: |
| Если дана последовательность и (строго возрастает), тогда последовательность называется подпоследовательностью исходной последовательности. |
Пример
В силу строго возрастания , очевидно, что если , то . Любая подпоследовательность сходится к тому же пределу.
| Теорема (Больцано): |
Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность |
| Доказательство: |
|
Применим способ половинного деления, основанный на принципе вложенных отрезков: если строить систему отрезков путем деления предыдущего отрезка пополам, то получится система вложенных отрезков, и так до бесконечности.. Пересечение всех отрезков — 1 точка (по свойству системы вложенных отрезков). Раз ограничена, то Делим его пополам, тогда в одной из двух половин этого отрезка будет содержаться бесконечно много . Назовем его Далее делим на 2 части и называем ту половину, в которой содержится бесконечно много . Продолжаем этот процесс до бесконечности.
По принципу вложенных отрезков:
Построим следующую таблицу:
Каждая последующая строчка составляется из предыдущей. Выбирая подпоследовательность так, чтобы номер следующего элемента был строго больше номера предыдущего выбранного элемента в предыдущей строчке. Получили подпоследовательность : (принцип сжатой переменной) — подпоследовательность и она сходится. |
Теорема Коши
Пункт третий связан с одним из фундаментальных свойств числовой оси — полнотой.
| Определение: |
| Последовательность сходится в себе:
|
| Утверждение: |
Если сходится, то сходится в себе. |
| Пусть , если в определении предела для положить , тогда каждое слагаемое не больше . |
| Теорема (Коши): |
Если числовая последовательность сходится в себе, то она сходится. |
| Доказательство: |
|
Положим . Вне может оказаться самое большее последовательность — ограничена. Раз она ограничена, по теореме Больцано, в ней можно выделить сходящуюся подпоследовательность. при .
По сходимости в себе: По сходимости Так как - неограниченно возрастающая последовательность натуральных чисел , так как заданы. Тогда для такого и всех |
сходится сходится в себе.
Такое свойство принято называть полнотой вещественной оси, также — критерий Коши существования предела числовой последовательности.