Изменения

Перейти к: навигация, поиск

Выброс

65 байт добавлено, 03:47, 25 января 2019
Алгоритмы борьбы с выбросами
===Алгоритмы борьбы с выбросами===
* Локально взвешенное сглаживание(англ. ''LOcally WEighted Scatter plot Smoothing'', ''LOWESS'')<ref>[http://www.aliquote.org/cours/2012_biomed/biblio/Cleveland1979.pdf Локально взвешенное сглаживание]</ref>. Данная методика была предложена Кливлендом(Cleveland) в 1979 году для моделирования и сглаживания двумерных данных <math>X^m={(x_i, y_i)}_{i=1}^m</math>. Эта техника предоставляет общий и гибкий подход для приближения двумерных данных. Локально-линейная модель может быть записана в виде: <math>y_t=\alpha_t+\beta_t x_t + \varepsilon_t</math>. Эта модель может быть расширена на случай локально-квадратичной зависимости и на модель с бо‘льшим числом независимых переменных. Параметры <math>\alpha_t</math> и <math>\beta_t</math> локально линейной модели оцениваются с помощью локально взвешенной регрессии, которая присваивает объекту тем больший вес, чем более близок он к объекту t. Степень сглаживания определяется параметром сглаживания <math>f</math>, который выбирает пользователь. Параметр <math>f </math> указывает, какая доля (fraction) данных используется в процедуре. Если <math>f = 0.5</math>, то только половина данных используется для оценки и влияет на результат, и тогда мы получим умеренное сглаживание. С другой стороны, если <math>f = 0.8</math>, то используются восемьдесят процентов данных, и сглаживание намного сильнее. Во всех случаях веса данных тем больше, чем они ближе к объекту <math>t</math>.
115
правок

Навигация