Получение номера об объекту и объекта по номеру — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Алгоритм)
(Алгоритм)
Строка 12: Строка 12:
  
 
Пусть <tex>l</tex> - длина объекта. Идем по порядку по всем элементам объекта (<tex>i</tex> - позиция элемента в объекте). Каждый элемент <tex>p</tex> будет являться максимально возможным. Для <tex>p</tex> кол-во возможных объектов <tex>s</tex>, начинающихся на элемент  <tex>p</tex> и имеющих длину <tex>l-i+1</tex>, не превосходит <tex>n</tex>. С каждым шагом <tex>n</tex> уменьшается на <tex>s</tex>.
 
Пусть <tex>l</tex> - длина объекта. Идем по порядку по всем элементам объекта (<tex>i</tex> - позиция элемента в объекте). Каждый элемент <tex>p</tex> будет являться максимально возможным. Для <tex>p</tex> кол-во возможных объектов <tex>s</tex>, начинающихся на элемент  <tex>p</tex> и имеющих длину <tex>l-i+1</tex>, не превосходит <tex>n</tex>. С каждым шагом <tex>n</tex> уменьшается на <tex>s</tex>.
 +
 +
 +
== Примеры ==
 +
'''Алгоритм вычисления по перестановке ее номера'''. Нам задана произвольная перестановка из N чисел. Пусть x - ее первое число. Тогда все перестановки с первыми числами от 1 до x-1 находятся перед нашей. Их количество num равно (x-1)·(N-1)!. Осталось узнать номер перестановки из N-1 числа, получающейся из нашей выбрасыванием числа x, и прибавить этот номер к num
 +
 +
'''Алгоритм получения перестановки по ее номеру''' реализуется аналогично: сначала определяем первую цифру перестановки, деля номер на (N-1)! и прибавляя 1, затем вторую, деля остаток от предыдущего деления на (N-2)!, и т.д.

Версия 22:30, 15 января 2011

Определение

Получение объекта по номеру n- это нахождение объекта, который стоит n-ым в лексикографическом порядке.

Получение номера по объекту - это нахождение номера объекта, стоящего в лексикографическом порядке.

Алгоритм

Нахождение номера по объекту:

[math] n = \sum_{i=1}^l s_{a_i-1}[/math], где [math]s_m[/math] это кол-во возможных объектов длины [math]n-i+1[/math], начинающихся на элемент [math]m[/math], [math]l[/math] - длина данного объекта.

Нахождение объекта по номеру:

Пусть [math]l[/math] - длина объекта. Идем по порядку по всем элементам объекта ([math]i[/math] - позиция элемента в объекте). Каждый элемент [math]p[/math] будет являться максимально возможным. Для [math]p[/math] кол-во возможных объектов [math]s[/math], начинающихся на элемент [math]p[/math] и имеющих длину [math]l-i+1[/math], не превосходит [math]n[/math]. С каждым шагом [math]n[/math] уменьшается на [math]s[/math].


Примеры

Алгоритм вычисления по перестановке ее номера. Нам задана произвольная перестановка из N чисел. Пусть x - ее первое число. Тогда все перестановки с первыми числами от 1 до x-1 находятся перед нашей. Их количество num равно (x-1)·(N-1)!. Осталось узнать номер перестановки из N-1 числа, получающейся из нашей выбрасыванием числа x, и прибавить этот номер к num

Алгоритм получения перестановки по ее номеру реализуется аналогично: сначала определяем первую цифру перестановки, деля номер на (N-1)! и прибавляя 1, затем вторую, деля остаток от предыдущего деления на (N-2)!, и т.д.