Виды ансамблей — различия между версиями
(Эффективность) |
(→Вероятность ошибки: Картинки) |
||
Строка 17: | Строка 17: | ||
Тогда <tex> R = \sum \limits_{i = m}^M C_M^i p ^ i (1 - p) ^ {M - i} </tex> | Тогда <tex> R = \sum \limits_{i = m}^M C_M^i p ^ i (1 - p) ^ {M - i} </tex> | ||
− | + | [[Файл:Виды_Ансамблей_1.png]][[Файл:Виды_Ансамблей_2.png]] | |
− | |||
== Бутстрэп == | == Бутстрэп == |
Версия 10:14, 19 февраля 2019
Ансамбль
Рассмотрим задачу классификации на K классов:
Пусть имеется M классификатор ("экспертов"):
Тогда давайте посмотрим новый классификатор на основе данных:
Простое голосование:
Взвешенное голосование:
Вероятность ошибки
Пусть
- количество присяжный, - вероятность правильного решения одного эксперта, - вероятность правильного решения всего жюри, - минимальное большинство членов жюриТогда
Бутстрэп
Метод бутстрэпа (англ. bootstrap) — один из первых и самых простых видов ансамблей, который позволяет оценивать многие статистики сложных распределений и заключается в следующем. Пусть имеется выборка
Обозначим новую выборку через . Повторяя процедуру раз, сгенерируем подвыборок . Теперь мы имеем достаточно большое число выборок и можем оценивать различные статистики исходного распределения.
Бутсреп используется в статистике, в том числе для:
- Аппроксимация стандартной ошибки выборочной оценки
- Байесовская коррекция с помощью бутстреп метода
- Доверительные интервалы
- Метод процентилей
Бэггинг
Пусть имеется выборка
размера . Количество классификаторовАлгоритм классификации в технологии бэггинг на подпространствах:
- Генерируется с помощью бутстрэпа M выборок размера N для каждого классификатора
- Производится независимое обучения каждого элементарного классификатора (каждого алгоритма, определенного на своем подпространстве).
- Производится классификация основной выборки на каждом из подпространств (также независимо).
- Принимается окончательное решение о принадлежности объекта одному из классов. Это можно сделать несколькими разными способами, подробнее описано ниже.
Окончательное решение о принадлежности объекта классу может приниматься, например, одним из следующих методов:
- Консенсус: если все элементарные классификаторы присвоили объекту одну и ту же метку, то относим объект к выбранному классу.
- Простое большинство: консенсус достижим очень редко, поэтому чаще всего используют метод простого большинства. Здесь объекту присваивается метка того класса, который определило для него большинство элементарных классификаторов.
- Взвешивание классификаторов: если классификаторов четное количество, то голосов может получиться поровну, еще возможно, что для эксперты одна из групп параметров важна в большей степени, тогда прибегают к взвешиванию классификаторов. То есть при голосовании голос классификатора умножается на его вес.
Эффективность
Рассмотрим задачу регрессии с базовыми алгоритмами
. Предположим, что существует истинная функция ответа для всех объектов y(x), а также задано распределение p(x) на объектах. В этом случае мы можем записать ошибку каждой функции регрессии:
и записать матожидание среднеквадратичной ошибки:
Средняя ошибка построенных функций регрессии имеет вид:
Предположим, что ошибки несмещены и некоррелированы:
Построим теперь новую функцию регрессии, которая будет усреднять ответы построенных нами функций:
Найдем ее среднеквадратичную ошибку:
Таким образом, усреднение ответов позволило уменьшить средний квадрат ошибки в
раз