68
правок
Изменения
Нет описания правки
Пусть <tex>M</tex> — количество присяжный, <tex>p</tex> — вероятность правильного решения одного эксперта, <tex>R</tex> — вероятность правильного решения всего жюри,
<tex>m</tex> — минимальное большинство членов жюри <tex> = \lfloor \frac N 2 \rfloor + 1 </tex>.
Тогда <tex> R = \sum \limits_{i = m}^M C_M^i p ^ i (1 - p) ^ {M - i} </tex>
== Бэггинг ==
Пусть имеется выборка <tex>X</tex> размера <tex>N</tex>. Количество классификаторов <tex>M</tex>.
Для алгоритма нам понадобится метод бутстрэпа (англ. ''bootstrap''):
= \frac 1 n E_1 </tex>
Таким образом, усреднение ответов позволило уменьшить средний квадрат ошибки в <tex>n</tex> раз.
== Бустинг ==
Бустинг (англ. boosting — улучшение) — это процедура последовательного построения композиции алгоритмов машинного обучения, когда каждый следующий алгоритм стремится компенсировать недостатки композиции всех предыдущих алгоритмов. Бустинг представляет собой жадный алгоритм построения композиции алгоритмов.
=== AdaBoost ===
Алгоритм [[Бустинг, AdaBoost |AdaBoost]] (сокр. от adaptive boosting) — алгоритм машинного обучения, предложенный Йоавом Фройндом (Yoav Freund) и Робертом Шапиром (Robert Schapire). Является мета-алгоритмом, в процессе обучения строит композицию из базовых алгоритмов обучения для улучшения их эффективности. AdaBoost является алгоритмом адаптивного бустинга в том смысле, что каждый следующий классификатор строится по объектам, которые плохо классифицируются предыдущими классификаторами.
AdaBoost вызывает слабый классификатор в цикле. После каждого вызова обновляется распределение весов, которые отвечают важности каждого из объектов обучающего множества для классификации. На каждой итерации веса каждого неверно классифицированного объекта возрастают, таким образом новый классификатор «фокусирует своё внимание» на этих объектах.
== Примеры кода ==