Изменения
Точки сочленения
# Граф содержит хотя бы один цикл.
# Граф не имеет [[Мост, эквивалентные определения|мостов]].
# Граф не имеет точек сочленения.
Если нарушено свойство 1, то граф нужно укладывать отдельно по компонентам связности. Если нарушено свойство 2, то граф {{---}} дерево и [[Укладка дерева|нарисовать его плоскую укладку]] тривиально.
|}
Пусть в каком-то сегменте нет ни одной контактной вершины. В таком случае граф до выделения <tex>G_{plane}</tex> был несвязным, что противоречит условию. Пусть контактная вершина в сегменте только одна. Это значит, что в графе был мостили точка сочленения, чего быть не может так же по условию. Таким образом, в каждом сегменте имеется не менее двух контактных вершин. Соответственно, в каждом сегменте есть цепь между любой парой контактных вершин.
Пусть грань <tex>\Gamma</tex> '''вмещает''' сегмент <tex>S</tex>, если номера всех контактных вершин <tex>S</tex> принадлежат этой грани, <tex>S \subset \Gamma</tex>. Очевидно, таких граней может быть несколько. Множество таких граней обозначим <tex>\Gamma(S)</tex>, а их число {{---}} <tex>|\Gamma(S)|</tex>.