Связь вершинного покрытия и независимого множества — различия между версиями
(→Независимое множество) |
(→Независимое множество) |
||
| Строка 2: | Строка 2: | ||
===Независимое множество=== | ===Независимое множество=== | ||
| − | [[Файл:Cover.jpg | + | [[Файл:Cover.jpg|right|100px|Пример минимального вершинного покрытия графа]] |
{{Определение|neat=neat|definition= | {{Определение|neat=neat|definition= | ||
Независимым множеством вершин графа <tex>G</tex> называется такое множество <tex>IVS</tex> <tex>(Independent</tex> <tex>vertex</tex> <tex>set) </tex>, что | Независимым множеством вершин графа <tex>G</tex> называется такое множество <tex>IVS</tex> <tex>(Independent</tex> <tex>vertex</tex> <tex>set) </tex>, что | ||
Версия 23:32, 15 января 2011
Содержание
Определения
Независимое множество
Определение:
Независимым множеством вершин графа называется такое множество , что
.
Определение:
Максимальным независимым множеством называется IVS максимальной мощности.
Связь вершинного покрытия и независимого множества
| Теорема: |
Дополнение минимального вершинного покрытия является максимальным независимым множеством. |
| Доказательство: |
|
Рассмотрим произвольное графа. Из определения следует, что любое ребро соединяет либо вершину из и , либо вершины множества . Таким образом, каждое ребро инцидентно некоторой вершине множества , то есть является некоторым вершинным покрытием. Тогда или . Рассмотрим произвольное графа. Так как каждое ребро инцидентно хотя бы одной вершине из , то является независимым множеством. Тогда или . Значит, , и является максимальным независимым множеством, а - минимальным вершинным покрытием. |
См. также
Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах.