Линейная регрессия — различия между версиями
Строка 49: | Строка 49: | ||
<tex> Q(\alpha, X^l) = \sum\limits_{i=1}^n (f(x_i, \alpha) - y_i)^2 = || F\alpha - y ||^2 \rightarrow \underset{\alpha}{min} </tex> | <tex> Q(\alpha, X^l) = \sum\limits_{i=1}^n (f(x_i, \alpha) - y_i)^2 = || F\alpha - y ||^2 \rightarrow \underset{\alpha}{min} </tex> | ||
+ | |||
+ | ==== Задача ==== | ||
+ | |||
+ | Необходимо найти вектор <tex> \alpha </tex> при известной матрице <tex> F </tex> и известном вектор-столбце <tex> y </tex>. |
Версия 16:36, 5 марта 2019
Линейная регрессия (англ. linear regression) — метод восстановления зависимости одной (объясняемой, зависимой) переменной
от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) с линейной функцией зависимости. Данный метод позволяет предсказывать значения зависимой переменной по значениям независимой переменной .Задача
Дано
- - числовые признаки
- модель многомерной линейной регрессии:
где
- обучающая выборка: множество из пар
- - объекты из множества
- - объекты из множества
Перейдем к матричным обозначениям:
, где
- - матрица объектов-признаков, где строки соответствуют объектам а столбцы - признакам
- - вектор ответов, или целевой вектор
- - вектор коэффициентов
В этих трех векторно-матричных обозначениях очень удобно расписать постановку задачи наименьших квадратов:
Задача
Необходимо найти вектор
при известной матрице и известном вектор-столбце .