XGBoost — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
XGBoost изначально стартовал как исследовательский проект Тяньцзи Чена (Tianqi Chen) как часть сообщества распределенного глубинного машинного обучения. Первоначально он начинался как терминальное приложение, которое можно было настроить с помощью файла конфигурации libsvm. После победы в Higgs Machine Learning Challenge, он стал хорошо известен в соревновательный кругах по машинному обеспечению. Вскоре после этого были созданы пакеты для Python и R, и теперь у него есть пакеты для многих других языков, таких как Julia, Scala, Java и т. д. Это принесло библиотеке больше разработчиков и сделало ее популярной среди сообщества Kaggle<ref>[https://www.kaggle.com/ Kaggle]</ref>, где она использовалось для большого количества соревнований.
 
XGBoost изначально стартовал как исследовательский проект Тяньцзи Чена (Tianqi Chen) как часть сообщества распределенного глубинного машинного обучения. Первоначально он начинался как терминальное приложение, которое можно было настроить с помощью файла конфигурации libsvm. После победы в Higgs Machine Learning Challenge, он стал хорошо известен в соревновательный кругах по машинному обеспечению. Вскоре после этого были созданы пакеты для Python и R, и теперь у него есть пакеты для многих других языков, таких как Julia, Scala, Java и т. д. Это принесло библиотеке больше разработчиков и сделало ее популярной среди сообщества Kaggle<ref>[https://www.kaggle.com/ Kaggle]</ref>, где она использовалось для большого количества соревнований.
  
Она вскоре стала использоваться с несколькими другими пакетами, что облегчает ее использование в соответствующих сообществах. Теперь у нее есть интеграция с scikit-learn для пользователей Python, а также с пакетом caret для пользователей R. Она также может быть интегрирована в рамах потока данных, таких как Apache Spark<ref>[https://spark.apache.org/ Apache Spark]</ref>, Apache Hadoop<ref>[https://hadoop.apache.org/ Apache Hadoop]</ref>, и Apache Flink<ref>[https://flink.apache.org/ Apache Flink]</ref> с использованием абстрактных Rabit и XGBoost4J. Принцип работы XGBoost также был опубликован Тяньцзи Ченом (Tianqi Chen) и Карлосом Гастрин (Carlos Guestrin).
+
Она вскоре стала использоваться с несколькими другими пакетами, что облегчает ее использование в соответствующих сообществах. Теперь у нее есть интеграция с scikit-learn для пользователей Python, а также с пакетом caret для пользователей R. Она также может быть интегрирована в рамах потока данных, таких как Apache Spark<ref>[https://spark.apache.org/ Apache Spark]</ref>, Apache Hadoop<ref>[https://hadoop.apache.org/ Apache Hadoop]</ref>, и Apache Flink<ref>[https://flink.apache.org/ Apache Flink]</ref> с использованием абстрактных Rabit<ref>[https://github.com/dmlc/rabit Rabit]</ref> и XGBoost4J<ref>[https://xgboost.readthedocs.io/en/latest/jvm/ XGBoost JVM]</ref>. Принцип работы XGBoost также был опубликован Тяньцзи Ченом (Tianqi Chen) и Карлосом Гастрин (Carlos Guestrin).
  
 
==Основные преимущества==
 
==Основные преимущества==

Версия 13:30, 16 марта 2019

XGBoost[1]. — одна из самых популярных и эффективных реализаций алгоритма градиентного бустинга на деревьях на 2019-й год.

История

XGBoost изначально стартовал как исследовательский проект Тяньцзи Чена (Tianqi Chen) как часть сообщества распределенного глубинного машинного обучения. Первоначально он начинался как терминальное приложение, которое можно было настроить с помощью файла конфигурации libsvm. После победы в Higgs Machine Learning Challenge, он стал хорошо известен в соревновательный кругах по машинному обеспечению. Вскоре после этого были созданы пакеты для Python и R, и теперь у него есть пакеты для многих других языков, таких как Julia, Scala, Java и т. д. Это принесло библиотеке больше разработчиков и сделало ее популярной среди сообщества Kaggle[2], где она использовалось для большого количества соревнований.

Она вскоре стала использоваться с несколькими другими пакетами, что облегчает ее использование в соответствующих сообществах. Теперь у нее есть интеграция с scikit-learn для пользователей Python, а также с пакетом caret для пользователей R. Она также может быть интегрирована в рамах потока данных, таких как Apache Spark[3], Apache Hadoop[4], и Apache Flink[5] с использованием абстрактных Rabit[6] и XGBoost4J[7]. Принцип работы XGBoost также был опубликован Тяньцзи Ченом (Tianqi Chen) и Карлосом Гастрин (Carlos Guestrin).

Основные преимущества

  • Возможность добавлять регуляризацию[на 16.03.19 не создан].
  • Возможность работать с разреженными данными.
  • Возможность распределенного обучения.
  • Эффективная реализация.

Идея алгоритма

[math]\mathcal{L}^{(t)} = \sum_{i=1}^n l(y_i,\hat{y_i}^{(t-1)}+f_t(x_i))+\Omega(f_t)[/math] — функция для оптимизации градиентного бустинга.

Дальше с помощью разложения Тейлора до второго члена можем приблизить это следующим выражением:

[math]\mathcal{L}^{(t)} = \sum_{i=1}^n l(y_i,\hat{y_i}^{(t-1)}) + g_i f_t(x_i) + 0.5 h_i f_t^2(x_i)) + \Omega(f_t)[/math], где

[math]g_i = \frac {\partial {l(y_i,\hat{y_i}^{t-1})}}{\partial{\hat{y_i}^{t-1}}}[/math], [math]h_i = \frac {\partial^2 {l(y_i,\hat{y_i}^{t-1})}}{\partial^2{\hat{y_i}^{t-1}}}[/math]

Поскольку мы хотим минимизировать ошибку модели на обучающей выборки, нам нужно найти минимум [math]\mathcal{L}^{(t)}[/math] для каждого t.

Минимум этого выражения относительно [math]f_t(x_i)[/math] находится в точке [math]f_t(x_i) = \frac{-g_i}{h_i}[/math].

Каждое отдельное дерево ансамбля [math]f_t(x_i)[/math] обучается стандартным алгоритмом. Для более полного описания смотрите статью Дерево решений и случайный лес.

Основные параметр

  • eta — размер шага. Пердотвращает переобучение.
  • gamma — минимальный loss для совершения split'a.
  • max_depth — максимальная глубина дерева.
  • lambda/alphaL2/L1 регуляризация.

Более полное описание параметров модели тут[8].

Пример использования с помощью библиотеки xgboost

from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
import xgboost as xgb
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
param = {
   'max_depth': 3,  # максимальная глубина дерева
   'eta': 0.3,  # параметр обучения 
   'silent': 1, 
   'objective': 'multi:softprob',  # функция потерь
   'num_class': 3}  # число классов
num_round = 20  # число итераций
bst = xgb.train(param, dtrain, num_round)
preds = bst.predict(dtest)
import numpy as np
from sklearn.metrics import precision_score
best_preds = np.asarray([np.argmax(line) for line in preds])
print precision_score(y_test, best_preds, average='macro')

См. также

Примечания

Источники информации