Мета-обучение — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 29: Строка 29:
 
Очень похоже на обычную задачу машинного обучения, только один датасет принимается за один сэмпл данных.
 
Очень похоже на обычную задачу машинного обучения, только один датасет принимается за один сэмпл данных.
  
Для этого используется заранее отобранное множество наборов данных <tex> D </tex>. Для каждого набора данных <tex> d \in D </tex> вычисляется вектор мета-признаков, которые описывают свойства этого набора данных. Ими могут быть: число категориальных или численных признаков объеков в <tex> d </tex>, число возможных меток, размер <tex> d </tex> и многие другие<ref>[https://www.fruct.org/publications/ainl-fruct/files/Fil.pdf Datasets meta-feature description for recommending feature selection algorithm]</ref>. Каждый алгоритм запускается на всех наборах данных из <tex> D </tex>. После этого вычисляется эмпирический риск, на основе которого формируются метки классов. Затем мета-классификатор обучается на полученных результатах. В качестве описания набора данных выступает вектор мета-признаков, а в качестве метки — алгоритм, оказавшийся самым эффективным с точки зрения заранее выбранной меры качества.  
+
Общая идея такая: для каждого набора данных $d \in \mathcal{D}$ вычисляется вектор мета-признаков, которые описывают свойства этого набора данных. Ими могут быть: число категориальных или численных признаков объеков в $d$, число возможных меток, размер $d$ и многие другие<ref>[https://www.fruct.org/publications/ainl-fruct/files/Fil.pdf Datasets meta-feature description for recommending feature selection algorithm]</ref>. Каждый алгоритм запускается на всех наборах данных из $\mathcal{D}$. После этого вычисляется эмпирический риск, на основе которого формируются метки классов. Затем мета-классификатор обучается на полученных результатах. В качестве описания набора данных выступает вектор мета-признаков, а в качестве метки — алгоритм, оказавшийся самым эффективным с точки зрения заранее выбранной меры качества.  
  
 
Кажддый датасет $d \in \mathcal{D}$ содержит пары фичей и меток, $\{(\mathbf{x}_i, y_i)\}$, каждая метка принадлежит известному множеству меток $\mathcal{L}$.
 
Кажддый датасет $d \in \mathcal{D}$ содержит пары фичей и меток, $\{(\mathbf{x}_i, y_i)\}$, каждая метка принадлежит известному множеству меток $\mathcal{L}$.
Строка 43: Строка 43:
 
В пристрелочной (few-shot) классификации цель {{---}} уменьшить ошибку предсказания на неразмеченных данных. Чтобы его ускорить, сделаем следующее:
 
В пристрелочной (few-shot) классификации цель {{---}} уменьшить ошибку предсказания на неразмеченных данных. Чтобы его ускорить, сделаем следующее:
 
# возьмем подмножество меток, $L\subset\mathcal{L}$
 
# возьмем подмножество меток, $L\subset\mathcal{L}$
# возьмем обучающее множесто $S^L⊂D$ и обучающую выборку $B^L⊂D$. Оба содержат только данные с метками из подмножества с пункта 1:
+
# возьмем обучающее множесто $S^L⊂D$ и обучающую выборку $B^L⊂D$. Оба содержат только данные с метками из подмножества с пункта 1: $L, y \in L, \forall (x, y) \in S^L, B^L$
 
 
\begin{aligned}
 
L, y \in L, \forall (x, y) \in S^L, B^L
 
\end{aligned}
 
 
 
# Множество $S^L$ подается на вход модели
 
# Конечная оптимизация использует множество $B^L$ чтобы посчитать loss и обновить параметры модели через обратное распространение, так же, как это делается в обучении с учителем.
 
 
 
\begin{aligned}
 
\theta = \arg\max_\theta \color{red}{E_{L\subset\mathcal{L}}[} E_{\color{red}{S^L \subset\mathcal{D}, }B^L \subset\mathcal{D}} [\sum_{(x, y)\in B^L} P_\theta(x, y\color{red}{, S^L})] \color{red}{]}
 
\end{aligned}
 
Красным цветом в формуле выделена разница между обучением с учителем и подходом мета-обучения.
 
 
 
Идея в некоторой степени аналогична использованию предварительно обученной модели в классификации изображений (ImageNet) или в NLP[LINK] (большие текстовые корпуса), когда доступен только ограниченный набор образцов данных для конкретной задачи. Модель обучается таким образом, чтобы она могла обобщиться до других датасетов.
 
 
 
<h2>Основанные на оптимизации</h2>
 
 
 
Модели глубокого обучения (англ. \emphdeep learning) обучаются через обратное распространение градиентов. [дичь] Тем не менее, оптимизация, основанная на градиентах не разрабатывалась для работы с небольшим количеством обучающих семплов, и не сходится за малое число оптимизационных шагов. Подход в мета-обучении, основанный на оптимизации как раз про это.[/дичь]
 
 
 
<h3>LSTM-meta-learner</h3>
 
Оптимизационный алгоритм может быть явно смоделирован. Ravi & Larochelle (2017) это и сделали и назвали его "meta-learner". Цель meta-learner'а - эффективно обновлять свои параметры используя небольшую обучающую выборку так, чтобы learner мог быстро адаптироваться к новым задачам.
 
 
 
Пусть модель ученика будет $M_\theta$, параметризованной $\theta$, и meta-learner как $R_\theta$ с параметром $\theta$, и функция потерь $\mathcal{L}$.
 
 
 
Обновление параметров learner'a во время $t$ cо скоростью обучения $\alpha_t$ (шаг градиентного спуска):
 
 
 
\begin{aligned}
 
\theta_t = \theta_{t-1} - \alpha_t \nabla_{\theta_{t-1}}\mathcal{L}_t
 
\end{aligned}
 
 
 
Обновление памяти ячейки LSTM выглядит так:
 
 
 
\begin{aligned}
 
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t = \theta_{t-1} - \alpha_t\nabla_{\theta_{t-1}}\mathcal{L}_t
 
\end{aligned}
 
 
 
$c_t$ {{---}} параметры сети $\theta_t$, $\tilde{c}_t = -\nabla_{\theta_{t-1}}\mathcal{L}_t$ при $f_t$ = 1.
 
 
 
$f_t$ = 1, $\tilde{c}_t = -\nabla_{\theta_{t-1}}\mathcal{L}_t$ - не оптимальные значения, их изменение может оказаться полезным, если вы попали в неудачный локальный минимум.
 
 
 
\begin{aligned}
 
  f_t &= \sigma(\mathbf{W}_f \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, f_{t-1}] + \mathbf{b}_f) & \\
 
  i_t &= \sigma(\mathbf{W}_i \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, i_{t-1}] + \mathbf{b}_i) & \\
 
\tilde{\theta}_t &= -\nabla_{\theta_{t-1}}\mathcal{L}_t &\\
 
\theta_t &= f_t \odot \theta_{t-1} + i_t \odot \tilde{\theta}_t &\\
 
\end{aligned}
 
$f_t$ здест отражает то, как сильно мы забываем старые значения параметров на шаге $t$, $i_t$ - рейт обучения на шаге $t$.
 
 
 
<h3>REPTILE</h3>
 
 
 
Reptile {{---}} относительно простой алгоритм мета-обучения, похожий на MAML, например, тем, что оба используют мета-оптимизацию через градиентный спуск и оба не чувствительны к модели.
 
 
 
# сэмплируем задачу
 
# тренируемся на ней несколькими шагами градиентного спуска
 
# сдвигаем веса модели к новым параметрам.
 
 
 
$\text{SGD}(\mathcal{L}_{\tau_i}, \theta, k)$ выполняет стохастический градиентный спуск на $k$ шагов на лоссе $\mathcal{L}_{\tau_i}$, начиная с параметра $\theta$ и возвращает конечный вектор параметров. Градиент reptile определяется как $(\theta - W)/\alpha$, где $\alpha$ {{---}} размер шага, используемый функцией $SGD$.
 
 
 
  <font color=green>// Algorithm REPTILE, batched version</font>
 
  Initialize $\theta$
 
  '''for''' $iteration = 1, 2,...$ '''do'''
 
    Sample tasks $\tau_1, \tau_2, ..., \tau_n$
 
    '''for''' $i = 1, 2, ..., n$ '''do'''
 
      Compute $W_i = \text{SGD}(\mathcal{L}_{\tau_i}, \theta, k)$
 
    '''end for'''
 
    Update $\theta \leftarrow \theta + \beta 1/n \sum (W_i - \theta)$
 
  '''end for'''
 
 
 
<h2>Определение множества конфигураций</h2>
 
Предшествующие вычисления могут быть также использованы для изучения пространства более успешных конфигураций $\theta\star$. Более подходящие под задачу конфигурации могут серьезно ускорить поиск оптимальных моделей, это важно при ограниченных вычислительных рессурсах.
 
 
 
Альтернативный подход сперва узнать оптимальные гиперпараметры, а потом через приращение производительности определить важность каждого из гиперпараметров. Это и было сделано в лабе OpenML, провели около 500 000 экспериментов на 6 алгоритмах и 38 датасетах. Стандартные значения изучались вместе для всех гиперпараметров алгоритма посредством обучения суррогатных моделей на большом числе задач. После того, как уже проверены многие варианты конфигураций, выбирается такая, которая минимизирует ??? для всех задач, становится стандартной.Далее определяется важность каждого из гиперпараметров. Чем больше меняется приращение производительности, тем более важный гиперпараметр мы изменяем.
 
 
 
Если мы хотим предоставить рекомендации для конкретной задачи $t_{new}$, нам нужна дополнительная информация о том, насколько $t_{new}$ похожа на предыдущие задачи $t_j$. Первый способ {{---}} посчитать число рекомендованных конфигураций для $t_new$, yielding новый эвиденс $\mathbf{P}_{new}$. Если позже мы будем наблюдать, что вычисления $P_{i,new}$ соответствуют $P_{i, j}$, то $t_{j}$ и $t_{new}$ могут быть очень похожими. Мы можем применить это знания для обучения meta-learner'a который предсказывает множество рекомендуемых конфигураций $\Theta^{*}_{new}$ for $t_{new}$.
 
Более того, можно пойти дальше и добавить $\Theta^{*}_{new}$ в $P_new$ и перейти к следующей итерации и выяснять какие еще задачи схожи друг с другом.
 
 
 
<h3>Relative landmarks</h3>
 
Первая мера для вычисления "похожести" задач вычисляла попарно разницу в производительности, так же называемую "relative landmarks" $RL_{a,b,j} = P_{a,j} - P_{b,j}$ между двумя конфигурациями $\theta_{a}$ и $\theta_{b}$ на конкретной задаче $t_{j}$.
 
 
 
<h3>Суррогатные модели</h3>
 
Более гибкий способ передать информацию {{---}} построить суррогатную модель $s_{j}(\theta_{i}) = P_{i,j}$ для всех предшествующих задач $t_{j}$, обученную с использованием всех доступных $\mathbf{P}$. Можно определить "похожесть" задач в терминах ошибок между $s_{j}(\theta_{i})$ и $P_{i,new}$: если суррогатная модель для $t_{j}$ может генерировать точные предсказания для $t_{new}$, тогда такие задачи весьма похожи. Обычно это делается в комбинации с Байесовской оптимизацией для определения следующей $\theta_{i}$.
 
 
 
Так же можно обучать суррогатные модели на Гауссовских процессах (GP) для каждой предыдущей задачи и еще одну для $t_{new}$ и объединить их во взвешенную и нормализованную сумму, с медианой $\mu$ определенной как взвшенная сумма $\mu_{j}$ полученных из задач $t_{j}$. Веса $\mu_{j}$ считаются через Nadaraya-Watson kernel-weighted average, где каждая задача представлена вектором relative landmarks и Epanechnikov quadratic kernel используется для определения похожести между векторами relative landmarks для $t_{j}$ и $t_{new}$. Чем больше $t_{j}$ похожа на  $t_{new}$, тем больше получится вес $s_{j}$, увеличивающий влияние суррогатной модели для $t_{j}$.
 
 
 
Суррогатные модели обучаются только на $P_{i, new}$, а следующий $\theta_{i}$ получается путем нахождения средневзвешенного expected improvement $P_{i, new}$ и предсказанных улучшений на всех предшествующих $P_{i, j}$.
 
Веса предшествующих задач могут быть переопределены через точность суррогатной модели или через relative landmarks.
 
Вес ожидаемого улучшения (expected improvement) постепенно возрастает с каждой итерацией (с увеличением собранного эвиденса $P_{i, new}$).
 
 
 
<h3>Обучение на свойствах задачи (learning on task properties)</h3>
 
Каждая задача $t_{j} \in T$ может быть описана вектором $m(t_j) = (m_{j,1}, ...,m_{j,K})$ из $K$ мета-признаков $m_{j, k} \in M$ $M$ {{---}} множество мета-признаков. Можно определить меру "похожести" задач, основанную, например, на Евклидовом расстоянии между $m(t_i)$ и $m(t_j)$, тогда можно будет использовать информацию из наиболее похожей задачи на новую задачу $t_{new}$. Более того, используя предшествующие вычисления $\textbf{P}$ можно обучить meta-learner'a $L$ предсказывать производительность $P_{i, new}$ конфигураций $\theta_{i}$ на новых задачах $t_{new}$.
 
 
 
$L: \Theta \times M \rightarrow \textbf{P}$
 
 
 
В таблице представлен обзор наиболее используемых мета-признаков.
 
 
 
{| class="wikitable"
 
|+ Meta-feature
 
|-
 
! '''Name''' !! '''Formula''' !! '''Rationale''' !! '''Variants'''
 
|-
 
| colspan="4" align="center" | '''simple'''
 
|-
 
| Nr instances || $n$ || Speed, Scalability<ref>[https://www1.maths.leeds.ac.uk~charlesstatlogwhole.pdf Donald Michie, David J. Spiegelhalter, Charles C. Taylor, and John Campbell. Machine Learning, Neural and Statistical Classification, 1994]</ref> || $p/n$, $log(n)$, log(n/p)
 
|-
 
| Nr features || $p$ || Curse of dimensionality || $log(p)$, % categorical
 
|-
 
| Nr classes || $c$ || Complexity, imbalance || ratio min/maj class
 
|-
 
| Nr missing values || $m$ || Imputation effects <ref>A. Kalousis. Algorithm Selection via Meta-Learning. PhD thesis, University of Geneva, Department of Computer Science, 2002</ref> || % missing
 
|-
 
| Nr outliers || $o$ || Data noisiness <ref>Peter J. Rousseeuw and Mia Hubert. Robust statistics for outlier detection. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011.</ref> || $o/n$
 
|-
 
| colspan="4" align="center" | '''statistical'''
 
|-
 
| Skewness || $\frac{E(X-\mu_{X})^{3}}{\sigma_{X}^{3}}$ || Feature normality || min,max,$\mu$,$\sigma$,$q_{1},q_{3}$
 
|-
 
| Kurtosis || $\frac{E(X-\mu_{X})^{4}}{\sigma_{X}^{4}}$ || Feature normality || min,max,$\mu$,$\sigma$,$q_{1},q_{3}$
 
|-
 
| Correlation || $\rho_{X_{1}X_{2}}$ || Feature interdependence || min,max,$\mu$,$\sigma$,$\rho_{XY}$
 
|-
 
| Covariance || $cov_{X_{1}X_{2}}$ || Feature interdependence || min,max,$\mu$,$\sigma$,$cov_{XY}$
 
|-
 
| Concentration || $\tau_{X_{1}X_{2}}$ || Feature interdependence <ref>Alexandros Kalousis and Melanie Hilario. Model selection via meta-learning: a comparative study.Intl Journ. on Artificial Intelligence Tools, 2001.</ref> || min,max,$\mu$,$\sigma$,$\tau_{XY}$
 
|-
 
| Sparsity || sparsity(X) || Degree of discreteness <ref>Mostafa A. Salama, Aboul~Ella Hassanien, and Kenneth Revett. Employment of neural network and rough set in meta-learning, 2013.</ref> || min,max,$\mu$,$\sigma$
 
|-
 
| Gravity || gravity(X) || Inter-class dispersion <ref>Shawkat Ali and Kate~A. Smith-Miles. On learning algorithm selection for classification. Applied Soft Computing, 2006.</ref> ||
 
|-
 
| ANOVA p-value || $p_{val_{\texttt{X}_{1}X_{2}}}$ || Feature redundancy || $p_{val_{XY}}$\citep{soares+04}
 
|-
 
| Coeff. of variation || $\frac{\sigma_{Y}}{\mu_{Y}}$ || Variation in target <ref>C. Soares, P. Brazdil, and P. Kuba. A meta-learning method to select the kernel width in support vector  regression, 2004.</ref> ||
 
|-
 
| PCA $\rho_{\lambda_{1}}$ || $\sqrt{\frac{\lambda_{1}}{1+\lambda_{1}}}$ || Variance in first PC || $\frac{\lambda_{1}}{\sum_{i} \lambda_{i}}$\citep{<re[https://www1.maths.leeds.ac.uk~charlesstatlogwhole.pdf]</ref>f>}
 
|-
 
| PCA skewness || || Skewness of first PC \citep{feurer2014using} || PCA kurtosis
 
|-
 
| PCA 95\% || $\frac{dim_{95\% var}}{p}$ || Intrinsic dimensionality <ref>R ́emi Bardenet, M ́aty ́as Brendel, Bal ́azs K ́egl, and Michele Sebag. Collaborative hyperparameter tuning. In Proceedings of ICML 2013, pages 199–207, 2013</ref> ||
 
|-
 
| Class probability || $P(\texttt{C})$ || Class distribution || min,max,$\mu$,$\sigma$
 
|-
 
| colspan="4" align="center" | '''informational-theoretic'''
 
|-
 
| Class entropy  || $H(\texttt{C})$ || Class imbalance ||
 
|-
 
| Norm. entropy || $\frac{H(\texttt{X})}{log_{2}n}$ || Feature informativeness <ref>Ciro Castiello, Giovanna Castellano, and Anna~Maria Fanelli. Meta-data: {C}haracterization of input features for meta-learning, pages 457 -- 468, 2005.</ref> || min,max,$\mu$,$\sigma$
 
|-
 
| Mutual inform. || $MI(\texttt{C},\texttt{X})$ || Feature importance || min,max,$\mu$,$\sigma$
 
|-
 
| Uncertainty coeff. || $\frac{MI(\texttt{C},\texttt{X})}{H(\texttt{C})}$ || <ref>Feature importance A. Agresti. Categorical Data Analysis. Wiley Interscience, 2002.</ref> || min,max,$\mu$,$\sigma$
 
|-
 
| Equiv. nr. feats || $\frac{H(C)}{\overline{MI(C,X)}}$ || Intrinsic dimensionality ||
 
|-
 
| Noise-signal ratio || $\frac{\overline{H(X)}-\overline{MI(C,X)}}{\overline{MI(C,X)}}$ || Noisiness of data ||
 
|-
 
| colspan="4" align="center" | '''complexity'''
 
|-
 
| Fisher's discrimin. || $\frac{(\mu_{c1}-\mu_{c2})^{2}}{\sigma_{c1}^{2}-\sigma_{c2}^{2}}$ || Separability classes $c_{1},c_{2}$ ||
 
|-
 
| Volume of overlap || || Class distribution overlap <ref>Tin Kam Ho and Mitra Basu. Complexity measures of supervised classification problems. Pattern Analysis and Machine Intellig, 2002.</ref> ||
 
|-
 
| Concept variation || || Task complexity <ref>R. Vilalta. Understanding accuracy performance through concept characterization and algorithm analysis. ICML Workshop on Recent Advances in Meta-Learning and Future Work, 1999.</ref> ||
 
|-
 
| Data consistency || || Data quality <ref>C K{\"o}pf and I Iglezakis. Combination of task description strategies and case base properties for meta-learning, 2002.</ref> ||
 
|-
 
| colspan="4" align="center" | '''model-based'''
 
|-
 
| Nr nodes, leaves || <tex>|\eta|,|\psi|</tex> || Concept complexity <ref>Y Peng, P Flach, C Soares, and P Brazdil. Improved dataset characterisation for meta-learning, 2002.</ref> || Tree depth
 
|-
 
| Branch length || || Concept complexity || min,max,$\mu$,$\sigma$
 
|-
 
| Nodes per feature || <tex>|\eta_{X}|</tex> || Feature importance || min,max,$\mu$,$\sigma$
 
|-
 
| Leaves per class || <tex>\frac{|\psi_{c}|}{|\psi|}</tex> ||  Class complexity <ref>Andray Filchenkov and Arseniy Pendryak. Dataset metafeature description for recommending feature selection. In \emph{ISMW FRUCT}, pages 11--18, 2015.</ref> || min,max,$\mu$,$\sigma$
 
|-
 
| Leaves agreement || <tex>\frac{n_{\psi_{i}}}{n}</tex> ||  Class separability <ref>Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning by landmarking various learning algorithms.In \emph{17th International Conference on Machine Learning (ICML), 2000.</ref> || min,max,$\mu$,$\sigma$
 
|-
 
| Information gain || || Feature importance || min,max,$\mu$,$\sigma$, gini
 
|-
 
| colspan="4" align="center" | '''landmarks'''
 
|-
 
| Landmarker(1NN) || $P(\theta_{1NN},t_{j})$ || Data sparsity <ref>Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning by landmarking various learning algorithms.In \emph{17th International Conference on Machine Learning (ICML)}, pages 743 -- 750, 2000.</ref> || See \citet{Pfahringer:2000p553}
 
|-
 
| Landmarker(Tree) || $P(\theta_{Tree},t_{j})$ || Data separability || Stump,RandomTree
 
|-
 
| Landmarker(Lin) || $P(\theta_{Lin},t_{j})$ || Linear separability || Lin.Disciminant
 
|-
 
| Landmarker(NB) || $P(\theta_{NB},t_{j})$ || Feature independence || See <ref>Daren Ler, Irena Koprinska, and Sanjay Chawla. Utilizing regression-based landmarkers within a meta-learning framework for algorithm selection. \emph{Technical Report 569. University of Sydney}, pages 44--51, 2005.</ref>
 
|-
 
| Relative LM || $P_{a,j} - P_{b,j}$ || Probing performance <ref>J F{\"u}rnkranz and J Petrak. An evaluation of landmarking variants. \emph{ECML/PKDD 2001 Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning}, pages 57--68, 2001.</ref> ||
 
|-
 
| Subsample LM || $P(\theta_{i},t_{j},s_{t})$ || Probing performance <ref>Taciana AF Gomes, Ricardo BC Prud{\^e}ncio, Carlos Soares, Andr{\'e} LD Rossi and Andr{\'e} Carvalho. Combining meta-learning and search techniques to select parameters for support vector machines, 2012.</ref> ||
 
|-
 
|}
 
 
 
Непрерывные фичи $X$ и таргет $Y$ имеют медиану $\mu_{X}$, стандартное отклонение $\sigma_{X}$ и дисперсию $\sigma^{2}_{X}$. Категориальные фичи $\texttt{X}$ и класс $\texttt{C}$ имеют категориальные значения  $\pi_{i}$, условные вероятности $\pi_{i|j}$, совместные вероятности $\pi_{i,j}$, предельные вероятности $\pi_{i+}=\sum_{j}\pi_{ij}$, энтропию $H(\texttt{X})=-\sum_{i}\pi_{i+}log_{2}(\pi_{i+})$.
 
 
 
Многие мета-фичи вычисляются по одиночным фичам или комбинации фичей, и должны быть агрегированы через min,max,$\mu$,$\sigma$,quartiles или гистограммами.
 
 
 
Во время вычисления похожести задач важно нормализовать все мета-признаки [bardnet], использовать отбор признаков <ref>L Todorovski and S Dzeroski. Experiments in meta-level learning with ILP. Lecture Notes in Computer Science, 1704:98–106, 1999.</ref> или использовать уменьшение размерности (PCA, например).
 
 
 
== Примечания ==
 
<references/>
 
 
 
== Источники информации ==
 
* https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html#define-the-meta-learning-problem
 
* https://arxiv.org/pdf/1810.03548.pdf
 
* https://www.ml4aad.org/wp-content/uploads/2018/09/chapter2-metalearning.pdf
 
* https://openreview.net/pdf?id=rJY0-Kcll
 
* https://www1.maths.leeds.ac.uk/~charles/statlog/whole.pdf
 
* https://www.fruct.org/publications/ainl-fruct/files/Fil.pdf
 
 
 
[[Категория: Машинное обучение]]
 
 
 
<b>Мета-обучение</b> {{---}} подход, позволяющий определять наиболее подходящий алгоритм (иногда, вместе с параметрами к нему) для конкретной задачи из портфолио алгоритмов. Основная идея мета-обучения {{---}} свести задачу выбора алгоритма к задаче [https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D1%81_%D1%83%D1%87%D0%B8%D1%82%D0%B5%D0%BB%D0%B5%D0%BC обучения с учителем]: задачи описываются мета-признаками. Мета-признак описывает свойство задачи {{---}} например, разрежен ли датасет или нет, число категориальных или численных признаков объеков в датасете, число возможных меток, размер датасета и многое другое.
 
 
 
От хорошей модели ожидается высокая адаптируемость к новым задачам и окружениям, с которыми модель не сталкивалась во время обучения.
 
 
 
Такими задачами являются:
 
* Классификатор обучали на изображениях собак и велосипедов, давайте покажем ему кошек и проверим, сможет ли классификатор определить, есть ли на новой картинке кошка
 
* Бот для игр, способный быстро обучиться новой игре
 
* Робот, выполняющий задачу на пригорке во время теста даже если он обучался на ровной поверхности
 
 
 
Ограничения {{---}} No free lunch (NFL) teorem<ref>[https://www.researchgate.net/publication/221997149_No_Free_Lunch_Theorems_for_Search Wolpert and Macready, 1996]</ref><ref>[https://www.researchgate.net/publication/228671734_Toward_a_justification_of_meta-learning_Is_the_no_free_lunch_theorem_a_show-stopper Giraud-Carrier and Provost, 2005]</ref> , доказанная в 1996 году.
 
Пусть $P(d_{m}^{y}| f, m, a)$ {{---}} условная вероятность получения частного решения $d_m$ после $m$ итераций работы алгоритма $a$ при целевой функции $f$. Для любой пары алгоритмов $a_1$ и $a_2$ иммет место равенство
 
 
 
\begin{aligned}
 
\sum_{f}P(d_{m}^{y}| f, m, a_1) = \sum_{f}P(d_{m}^{y}| f, m, a_2)
 
\end{aligned}
 
 
 
Иначе говоря, не существует алгоритма классификации, который лучше всех других на всех возможных входных данных.
 
 
 
<h2>Обзор</h2>
 
 
 
Модель должна быть обучена на множестве задач и оптимизирована для лучшей производительности на нескольких задачах, включая такие,
 
с которыми модель не сталкивалась ранее. Каждой задаче соответствует множество наборов данных $\mathcal{D}$, каждый из которых содержит и векторы фичей и разметку.
 
Оптимальные параметры модели:
 
 
 
\begin{aligned}
 
\theta^* = \arg\min_\theta \mathbb{E}_{\mathcal{D}\sim p(\mathcal{D})} [\mathcal{L}_\theta(\mathcal{D})]
 
\end{aligned}
 
 
 
Очень похоже на обычную задачу машинного обучения, только один датасет принимается за один сэмпл данных.
 
 
 
Для этого используется заранее отобранное множество наборов данных <tex> D </tex>. Для каждого набора данных <tex> d \in D </tex> вычисляется вектор мета-признаков, которые описывают свойства этого набора данных. Ими могут быть: число категориальных или численных признаков объеков в <tex> d </tex>, число возможных меток, размер <tex> d </tex> и многие другие<ref>[https://www.fruct.org/publications/ainl-fruct/files/Fil.pdf Datasets meta-feature description for recommending feature selection algorithm]</ref>. Каждый алгоритм запускается на всех наборах данных из <tex> D </tex>. После этого вычисляется эмпирический риск, на основе которого формируются метки классов. Затем мета-классификатор обучается на полученных результатах. В качестве описания набора данных выступает вектор мета-признаков, а в качестве метки — алгоритм, оказавшийся самым эффективным с точки зрения заранее выбранной меры качества.
 
 
 
Кажддый датасет $d \in \mathcal{D}$ содержит пары фичей и меток, $\{(\mathbf{x}_i, y_i)\}$, каждая метка принадлежит известному множеству меток $\mathcal{L}$.
 
Датасет $d$ делится на две части: $d=\langle S, B\rangle$, обучающую $S$ и тестовую $B$ выборки. Часто принимается k-shot N-class задача - обучающая выборка содержит $k$ размеченных примеров для каждого из $N$ классов.
 
Скажем, наш классификатор $f_\theta$ с параметром $\theta$ показывает вероятность принадлежности точки из данных к классу $y$ при векторе фичей $x$, $P_\theta(y|x)$.
 
Оптимальные параметры должны максимизировать вероятность получения верных меток среди нескольких обучающих выборок $B⊂\mathcal{D}$:
 
 
 
\begin{aligned}
 
\theta^* &= {\arg\max}_{\theta} \mathbb{E}_{(\mathbf{x}, y)\in \mathcal{D}}[P_\theta(y \vert \mathbf{x})] & \\
 
\theta^* &= {\arg\max}_{\theta} \mathbb{E}_{B\subset \mathcal{D}}[\sum_{(\mathbf{x}, y)\in B}P_\theta(y \vert \mathbf{x})] & \\
 
\end{aligned}
 
 
 
В пристрелочной (few-shot) классификации цель {{---}} уменьшить ошибку предсказания на неразмеченных данных. Чтобы его ускорить, сделаем следующее:
 
# возьмем подмножество меток, $L\subset\mathcal{L}$
 
# возьмем обучающее множесто $S^L⊂D$ и обучающую выборку $B^L⊂D$. Оба содержат только данные с метками из подмножества с пункта 1:
 
 
 
\begin{aligned}
 
L, y \in L, \forall (x, y) \in S^L, B^L
 
\end{aligned}
 
 
 
 
# Множество $S^L$ подается на вход модели
 
# Множество $S^L$ подается на вход модели
 
# Конечная оптимизация использует множество $B^L$ чтобы посчитать loss и обновить параметры модели через обратное распространение, так же, как это делается в обучении с учителем.
 
# Конечная оптимизация использует множество $B^L$ чтобы посчитать loss и обновить параметры модели через обратное распространение, так же, как это делается в обучении с учителем.
Строка 313: Строка 50:
 
\theta = \arg\max_\theta \color{red}{E_{L\subset\mathcal{L}}[} E_{\color{red}{S^L \subset\mathcal{D}, }B^L \subset\mathcal{D}} [\sum_{(x, y)\in B^L} P_\theta(x, y\color{red}{, S^L})] \color{red}{]}
 
\theta = \arg\max_\theta \color{red}{E_{L\subset\mathcal{L}}[} E_{\color{red}{S^L \subset\mathcal{D}, }B^L \subset\mathcal{D}} [\sum_{(x, y)\in B^L} P_\theta(x, y\color{red}{, S^L})] \color{red}{]}
 
\end{aligned}
 
\end{aligned}
Красным цветом в формуле выделена разница между обучением с учителем и подходом мета-обучения.
+
Красным цветом выделена разница между обучением с учителем и подходом мета-обучения.
  
Идея в некоторой степени аналогична использованию предварительно обученной модели в классификации изображений (ImageNet) или в NLP[LINK] (большие текстовые корпуса), когда доступен только ограниченный набор образцов данных для конкретной задачи. Модель обучается таким образом, чтобы она могла обобщиться до других датасетов.
+
Идея в некоторой степени аналогична использованию предварительно обученной модели в классификации изображений (ImageNet) или в [[обработка естественного языка | NLP]] (большие текстовые корпуса),
 +
когда доступен только ограниченный набор образцов данных для конкретной задачи. Модель обучается таким образом, чтобы она могла обобщиться до других датасетов.
  
 
<h2>Основанные на оптимизации</h2>
 
<h2>Основанные на оптимизации</h2>
  
Модели глубокого обучения (англ. \emphdeep learning) обучаются через обратное распространение градиентов. [дичь] Тем не менее, оптимизация, основанная на градиентах не разрабатывалась для работы с небольшим количеством обучающих семплов, и не сходится за малое число оптимизационных шагов. Подход в мета-обучении, основанный на оптимизации как раз про это.[/дичь]
+
Модели [[глубокое обучение | глубокого обучения]] (англ. <i>deep learning</i>) обучаются через обратное распространение градиентов.
  
 
<h3>LSTM-meta-learner</h3>
 
<h3>LSTM-meta-learner</h3>
Оптимизационный алгоритм может быть явно смоделирован. Ravi & Larochelle (2017) это и сделали и назвали его "meta-learner". Цель meta-learner'а - эффективно обновлять свои параметры используя небольшую обучающую выборку так, чтобы learner мог быстро адаптироваться к новым задачам.
+
Оптимизационный алгоритм может быть явно смоделирован. Рави и Ларошель <ref>[https://openreview.net/pdf?id=rJY0-Kcll]</ref> это и сделали и назвали его "meta-learner". Цель meta-learner'а - эффективно обновлять свои параметры используя небольшую обучающую выборку так, чтобы learner мог быстро адаптироваться к новым задачам.
  
 
Пусть модель ученика будет $M_\theta$, параметризованной $\theta$, и meta-learner как $R_\theta$ с параметром $\theta$, и функция потерь $\mathcal{L}$.
 
Пусть модель ученика будет $M_\theta$, параметризованной $\theta$, и meta-learner как $R_\theta$ с параметром $\theta$, и функция потерь $\mathcal{L}$.
Строка 343: Строка 81:
  
 
\begin{aligned}
 
\begin{aligned}
  f_t &= \sigma(\mathbf{W}_f \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, f_{t-1}] + \mathbf{b}_f) & \\
+
f_t &= \sigma(\mathbf{W}_f \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, f_{t-1}] + \mathbf{b}_f) & \\
  i_t &= \sigma(\mathbf{W}_i \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, i_{t-1}] + \mathbf{b}_i) & \\
+
i_t &= \sigma(\mathbf{W}_i \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, i_{t-1}] + \mathbf{b}_i) & \\
\tilde{\theta}_t &= -\nabla_{\theta_{t-1}}\mathcal{L}_t &\\
+
\tilde{\theta}_t &= -\nabla_{\theta_{t-1}}\mathcal{L}_t & \\
\theta_t &= f_t \odot \theta_{t-1} + i_t \odot \tilde{\theta}_t &\\
+
\theta_t &= f_t \odot \theta_{t-1} + i_t \odot \tilde{\theta}_t & \\
 
\end{aligned}
 
\end{aligned}
$f_t$ здест отражает то, как сильно мы забываем старые значения параметров на шаге $t$, $i_t$ - рейт обучения на шаге $t$.
+
$f_t$ {{---}} как сильно мы забываем старые значения параметров на шаге $t$, $i_t$ {{---}} рейт обучения на шаге $t$.
  
 
<h3>REPTILE</h3>
 
<h3>REPTILE</h3>
Строка 384: Строка 122:
 
Более гибкий способ передать информацию {{---}} построить суррогатную модель $s_{j}(\theta_{i}) = P_{i,j}$ для всех предшествующих задач $t_{j}$, обученную с использованием всех доступных $\mathbf{P}$. Можно определить "похожесть" задач в терминах ошибок между $s_{j}(\theta_{i})$ и $P_{i,new}$: если суррогатная модель для $t_{j}$ может генерировать точные предсказания для $t_{new}$, тогда такие задачи весьма похожи. Обычно это делается в комбинации с Байесовской оптимизацией для определения следующей $\theta_{i}$.
 
Более гибкий способ передать информацию {{---}} построить суррогатную модель $s_{j}(\theta_{i}) = P_{i,j}$ для всех предшествующих задач $t_{j}$, обученную с использованием всех доступных $\mathbf{P}$. Можно определить "похожесть" задач в терминах ошибок между $s_{j}(\theta_{i})$ и $P_{i,new}$: если суррогатная модель для $t_{j}$ может генерировать точные предсказания для $t_{new}$, тогда такие задачи весьма похожи. Обычно это делается в комбинации с Байесовской оптимизацией для определения следующей $\theta_{i}$.
  
Так же можно обучать суррогатные модели на Гауссовских процессах (GP) для каждой предыдущей задачи и еще одну для $t_{new}$ и объединить их во взвешенную и нормализованную сумму, с медианой $\mu$ определенной как взвшенная сумма $\mu_{j}$ полученных из задач $t_{j}$. Веса $\mu_{j}$ считаются через Nadaraya-Watson kernel-weighted average, где каждая задача представлена вектором relative landmarks и Epanechnikov quadratic kernel используется для определения похожести между векторами relative landmarks для $t_{j}$ и $t_{new}$. Чем больше $t_{j}$ похожа на  $t_{new}$, тем больше получится вес $s_{j}$, увеличивающий влияние суррогатной модели для $t_{j}$.
+
Так же можно обучать суррогатные модели на Гауссовских процессах (GP) для каждой предыдущей задачи и еще одну для $t_{new}$ и объединить их во взвешенную и нормализованную сумму, с медианой $\mu$ определенной как взвшенная
 +
сумма $\mu_{j}$ полученных из задач $t_{j}$. Веса $\mu_{j}$ считаются методом Надарая-Уотсон<ref>[http://www.maths.manchester.ac.uk/~peterf/MATH38011/NPR%20N-W%20Estimator.pdf]</ref>, где каждая задача представлена вектором relative landmarks или
 +
ядром Епанечникова<ref>[https://epubs.siam.org/doi/10.1137/1114019]</ref>, используется для определения похожести между векторами relative landmarks для $t_{j}$ и $t_{new}$.
 +
Чем больше $t_{j}$ похожа на  $t_{new}$, тем больше получится вес $s_{j}$, увеличивающий влияние суррогатной модели для $t_{j}$.
  
 
Суррогатные модели обучаются только на $P_{i, new}$, а следующий $\theta_{i}$ получается путем нахождения средневзвешенного expected improvement $P_{i, new}$ и предсказанных улучшений на всех предшествующих $P_{i, j}$.
 
Суррогатные модели обучаются только на $P_{i, new}$, а следующий $\theta_{i}$ получается путем нахождения средневзвешенного expected improvement $P_{i, new}$ и предсказанных улучшений на всех предшествующих $P_{i, j}$.
Строка 500: Строка 241:
 
Многие мета-фичи вычисляются по одиночным фичам или комбинации фичей, и должны быть агрегированы через min,max,$\mu$,$\sigma$,quartiles или гистограммами.
 
Многие мета-фичи вычисляются по одиночным фичам или комбинации фичей, и должны быть агрегированы через min,max,$\mu$,$\sigma$,quartiles или гистограммами.
  
Во время вычисления похожести задач важно нормализовать все мета-признаки [bardnet], использовать отбор признаков <ref>L Todorovski and S Dzeroski. Experiments in meta-level learning with ILP. Lecture Notes in Computer Science, 1704:98–106, 1999.</ref> или использовать уменьшение размерности (PCA, например).
+
Во время вычисления похожести задач важно нормализовать все мета-признаки, использовать отбор признаков <ref>L Todorovski and S Dzeroski. Experiments in meta-level learning with ILP. Lecture Notes in Computer Science, 1704:98–106, 1999.</ref> или использовать уменьшение размерности (PCA, например).
  
 
== Примечания ==
 
== Примечания ==

Версия 00:32, 6 апреля 2019

Мета-обучение — подход, позволяющий определять наиболее подходящий алгоритм (иногда, вместе с параметрами к нему) для конкретной задачи из портфолио алгоритмов. Основная идея мета-обучения — свести задачу выбора алгоритма к задаче обучения с учителем: задачи описываются мета-признаками. Мета-признак описывает свойство задачи — например, разрежен ли датасет или нет, число категориальных или численных признаков объеков в датасете, число возможных меток, размер датасета и многое другое.

От хорошей модели ожидается высокая адаптируемость к новым задачам и окружениям, с которыми модель не сталкивалась во время обучения.

Такими задачами являются:

  • Классификатор обучали на изображениях собак и велосипедов, давайте покажем ему кошек и проверим, сможет ли классификатор определить, есть ли на новой картинке кошка
  • Бот для игр, способный быстро обучиться новой игре
  • Робот, выполняющий задачу на пригорке во время теста даже если он обучался на ровной поверхности

Ограничения — No free lunch (NFL) teorem[1][2] , доказанная в 1996 году. Пусть $P(d_{m}^{y}| f, m, a)$ — условная вероятность получения частного решения $d_m$ после $m$ итераций работы алгоритма $a$ при целевой функции $f$. Для любой пары алгоритмов $a_1$ и $a_2$ иммет место равенство

\begin{aligned} \sum_{f}P(d_{m}^{y}| f, m, a_1) = \sum_{f}P(d_{m}^{y}| f, m, a_2) \end{aligned}

Иначе говоря, не существует алгоритма классификации, который лучше всех других на всех возможных входных данных.

Обзор

Модель должна быть обучена на множестве задач и оптимизирована для лучшей производительности на нескольких задачах, включая такие, с которыми модель не сталкивалась ранее. Каждой задаче соответствует множество наборов данных $\mathcal{D}$, каждый из которых содержит и векторы фичей и разметку. Оптимальные параметры модели:

\begin{aligned} \theta^* = \arg\min_\theta \mathbb{E}_{\mathcal{D}\sim p(\mathcal{D})} [\mathcal{L}_\theta(\mathcal{D})] \end{aligned}

Очень похоже на обычную задачу машинного обучения, только один датасет принимается за один сэмпл данных.

Общая идея такая: для каждого набора данных $d \in \mathcal{D}$ вычисляется вектор мета-признаков, которые описывают свойства этого набора данных. Ими могут быть: число категориальных или численных признаков объеков в $d$, число возможных меток, размер $d$ и многие другие[3]. Каждый алгоритм запускается на всех наборах данных из $\mathcal{D}$. После этого вычисляется эмпирический риск, на основе которого формируются метки классов. Затем мета-классификатор обучается на полученных результатах. В качестве описания набора данных выступает вектор мета-признаков, а в качестве метки — алгоритм, оказавшийся самым эффективным с точки зрения заранее выбранной меры качества.

Кажддый датасет $d \in \mathcal{D}$ содержит пары фичей и меток, $\{(\mathbf{x}_i, y_i)\}$, каждая метка принадлежит известному множеству меток $\mathcal{L}$. Датасет $d$ делится на две части: $d=\langle S, B\rangle$, обучающую $S$ и тестовую $B$ выборки. Часто принимается k-shot N-class задача - обучающая выборка содержит $k$ размеченных примеров для каждого из $N$ классов. Скажем, наш классификатор $f_\theta$ с параметром $\theta$ показывает вероятность принадлежности точки из данных к классу $y$ при векторе фичей $x$, $P_\theta(y|x)$. Оптимальные параметры должны максимизировать вероятность получения верных меток среди нескольких обучающих выборок $B⊂\mathcal{D}$:

\begin{aligned} \theta^* &= {\arg\max}_{\theta} \mathbb{E}_{(\mathbf{x}, y)\in \mathcal{D}}[P_\theta(y \vert \mathbf{x})] & \\ \theta^* &= {\arg\max}_{\theta} \mathbb{E}_{B\subset \mathcal{D}}[\sum_{(\mathbf{x}, y)\in B}P_\theta(y \vert \mathbf{x})] & \\ \end{aligned}

В пристрелочной (few-shot) классификации цель — уменьшить ошибку предсказания на неразмеченных данных. Чтобы его ускорить, сделаем следующее:

  1. возьмем подмножество меток, $L\subset\mathcal{L}$
  2. возьмем обучающее множесто $S^L⊂D$ и обучающую выборку $B^L⊂D$. Оба содержат только данные с метками из подмножества с пункта 1: $L, y \in L, \forall (x, y) \in S^L, B^L$
  3. Множество $S^L$ подается на вход модели
  4. Конечная оптимизация использует множество $B^L$ чтобы посчитать loss и обновить параметры модели через обратное распространение, так же, как это делается в обучении с учителем.

\begin{aligned} \theta = \arg\max_\theta \color{red}{E_{L\subset\mathcal{L}}[} E_{\color{red}{S^L \subset\mathcal{D}, }B^L \subset\mathcal{D}} [\sum_{(x, y)\in B^L} P_\theta(x, y\color{red}{, S^L})] \color{red}{]} \end{aligned} Красным цветом выделена разница между обучением с учителем и подходом мета-обучения.

Идея в некоторой степени аналогична использованию предварительно обученной модели в классификации изображений (ImageNet) или в NLP (большие текстовые корпуса), когда доступен только ограниченный набор образцов данных для конкретной задачи. Модель обучается таким образом, чтобы она могла обобщиться до других датасетов.

Основанные на оптимизации

Модели глубокого обучения (англ. deep learning) обучаются через обратное распространение градиентов.

LSTM-meta-learner

Оптимизационный алгоритм может быть явно смоделирован. Рави и Ларошель [4] это и сделали и назвали его "meta-learner". Цель meta-learner'а - эффективно обновлять свои параметры используя небольшую обучающую выборку так, чтобы learner мог быстро адаптироваться к новым задачам.

Пусть модель ученика будет $M_\theta$, параметризованной $\theta$, и meta-learner как $R_\theta$ с параметром $\theta$, и функция потерь $\mathcal{L}$.

Обновление параметров learner'a во время $t$ cо скоростью обучения $\alpha_t$ (шаг градиентного спуска):

\begin{aligned} \theta_t = \theta_{t-1} - \alpha_t \nabla_{\theta_{t-1}}\mathcal{L}_t \end{aligned}

Обновление памяти ячейки LSTM выглядит так:

\begin{aligned} c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t = \theta_{t-1} - \alpha_t\nabla_{\theta_{t-1}}\mathcal{L}_t \end{aligned}

$c_t$ — параметры сети $\theta_t$, $\tilde{c}_t = -\nabla_{\theta_{t-1}}\mathcal{L}_t$ при $f_t$ = 1.

$f_t$ = 1, $\tilde{c}_t = -\nabla_{\theta_{t-1}}\mathcal{L}_t$ - не оптимальные значения, их изменение может оказаться полезным, если вы попали в неудачный локальный минимум.

\begin{aligned} f_t &= \sigma(\mathbf{W}_f \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, f_{t-1}] + \mathbf{b}_f) & \\ i_t &= \sigma(\mathbf{W}_i \cdot [\nabla_{\theta_{t-1}}\mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, i_{t-1}] + \mathbf{b}_i) & \\ \tilde{\theta}_t &= -\nabla_{\theta_{t-1}}\mathcal{L}_t & \\ \theta_t &= f_t \odot \theta_{t-1} + i_t \odot \tilde{\theta}_t & \\ \end{aligned} $f_t$ — как сильно мы забываем старые значения параметров на шаге $t$, $i_t$ — рейт обучения на шаге $t$.

REPTILE

Reptile — относительно простой алгоритм мета-обучения, похожий на MAML, например, тем, что оба используют мета-оптимизацию через градиентный спуск и оба не чувствительны к модели.

  1. сэмплируем задачу
  2. тренируемся на ней несколькими шагами градиентного спуска
  3. сдвигаем веса модели к новым параметрам.

$\text{SGD}(\mathcal{L}_{\tau_i}, \theta, k)$ выполняет стохастический градиентный спуск на $k$ шагов на лоссе $\mathcal{L}_{\tau_i}$, начиная с параметра $\theta$ и возвращает конечный вектор параметров. Градиент reptile определяется как $(\theta - W)/\alpha$, где $\alpha$ — размер шага, используемый функцией $SGD$.

 // Algorithm REPTILE, batched version
 Initialize $\theta$
 for $iteration = 1, 2,...$ do
   Sample tasks $\tau_1, \tau_2, ..., \tau_n$
   for $i = 1, 2, ..., n$ do
     Compute $W_i = \text{SGD}(\mathcal{L}_{\tau_i}, \theta, k)$
   end for
   Update $\theta \leftarrow \theta + \beta 1/n \sum (W_i - \theta)$
 end for

Определение множества конфигураций

Предшествующие вычисления могут быть также использованы для изучения пространства более успешных конфигураций $\theta\star$. Более подходящие под задачу конфигурации могут серьезно ускорить поиск оптимальных моделей, это важно при ограниченных вычислительных рессурсах.

Альтернативный подход сперва узнать оптимальные гиперпараметры, а потом через приращение производительности определить важность каждого из гиперпараметров. Это и было сделано в лабе OpenML, провели около 500 000 экспериментов на 6 алгоритмах и 38 датасетах. Стандартные значения изучались вместе для всех гиперпараметров алгоритма посредством обучения суррогатных моделей на большом числе задач. После того, как уже проверены многие варианты конфигураций, выбирается такая, которая минимизирует ??? для всех задач, становится стандартной.Далее определяется важность каждого из гиперпараметров. Чем больше меняется приращение производительности, тем более важный гиперпараметр мы изменяем.

Если мы хотим предоставить рекомендации для конкретной задачи $t_{new}$, нам нужна дополнительная информация о том, насколько $t_{new}$ похожа на предыдущие задачи $t_j$. Первый способ — посчитать число рекомендованных конфигураций для $t_new$, yielding новый эвиденс $\mathbf{P}_{new}$. Если позже мы будем наблюдать, что вычисления $P_{i,new}$ соответствуют $P_{i, j}$, то $t_{j}$ и $t_{new}$ могут быть очень похожими. Мы можем применить это знания для обучения meta-learner'a который предсказывает множество рекомендуемых конфигураций $\Theta^{*}_{new}$ for $t_{new}$. Более того, можно пойти дальше и добавить $\Theta^{*}_{new}$ в $P_new$ и перейти к следующей итерации и выяснять какие еще задачи схожи друг с другом.

Relative landmarks

Первая мера для вычисления "похожести" задач вычисляла попарно разницу в производительности, так же называемую "relative landmarks" $RL_{a,b,j} = P_{a,j} - P_{b,j}$ между двумя конфигурациями $\theta_{a}$ и $\theta_{b}$ на конкретной задаче $t_{j}$.

Суррогатные модели

Более гибкий способ передать информацию — построить суррогатную модель $s_{j}(\theta_{i}) = P_{i,j}$ для всех предшествующих задач $t_{j}$, обученную с использованием всех доступных $\mathbf{P}$. Можно определить "похожесть" задач в терминах ошибок между $s_{j}(\theta_{i})$ и $P_{i,new}$: если суррогатная модель для $t_{j}$ может генерировать точные предсказания для $t_{new}$, тогда такие задачи весьма похожи. Обычно это делается в комбинации с Байесовской оптимизацией для определения следующей $\theta_{i}$.

Так же можно обучать суррогатные модели на Гауссовских процессах (GP) для каждой предыдущей задачи и еще одну для $t_{new}$ и объединить их во взвешенную и нормализованную сумму, с медианой $\mu$ определенной как взвшенная сумма $\mu_{j}$ полученных из задач $t_{j}$. Веса $\mu_{j}$ считаются методом Надарая-Уотсон[5], где каждая задача представлена вектором relative landmarks или ядром Епанечникова[6], используется для определения похожести между векторами relative landmarks для $t_{j}$ и $t_{new}$. Чем больше $t_{j}$ похожа на $t_{new}$, тем больше получится вес $s_{j}$, увеличивающий влияние суррогатной модели для $t_{j}$.

Суррогатные модели обучаются только на $P_{i, new}$, а следующий $\theta_{i}$ получается путем нахождения средневзвешенного expected improvement $P_{i, new}$ и предсказанных улучшений на всех предшествующих $P_{i, j}$. Веса предшествующих задач могут быть переопределены через точность суррогатной модели или через relative landmarks. Вес ожидаемого улучшения (expected improvement) постепенно возрастает с каждой итерацией (с увеличением собранного эвиденса $P_{i, new}$).

Обучение на свойствах задачи (learning on task properties)

Каждая задача $t_{j} \in T$ может быть описана вектором $m(t_j) = (m_{j,1}, ...,m_{j,K})$ из $K$ мета-признаков $m_{j, k} \in M$ $M$ — множество мета-признаков. Можно определить меру "похожести" задач, основанную, например, на Евклидовом расстоянии между $m(t_i)$ и $m(t_j)$, тогда можно будет использовать информацию из наиболее похожей задачи на новую задачу $t_{new}$. Более того, используя предшествующие вычисления $\textbf{P}$ можно обучить meta-learner'a $L$ предсказывать производительность $P_{i, new}$ конфигураций $\theta_{i}$ на новых задачах $t_{new}$.

$L: \Theta \times M \rightarrow \textbf{P}$

В таблице представлен обзор наиболее используемых мета-признаков.

Meta-feature
Name Formula Rationale Variants
simple
Nr instances $n$ Speed, Scalability[7] $p/n$, $log(n)$, log(n/p)
Nr features $p$ Curse of dimensionality $log(p)$, % categorical
Nr classes $c$ Complexity, imbalance ratio min/maj class
Nr missing values $m$ Imputation effects [8]  % missing
Nr outliers $o$ Data noisiness [9] $o/n$
statistical
Skewness $\frac{E(X-\mu_{X})^{3}}{\sigma_{X}^{3}}$ Feature normality min,max,$\mu$,$\sigma$,$q_{1},q_{3}$
Kurtosis $\frac{E(X-\mu_{X})^{4}}{\sigma_{X}^{4}}$ Feature normality min,max,$\mu$,$\sigma$,$q_{1},q_{3}$
Correlation $\rho_{X_{1}X_{2}}$ Feature interdependence min,max,$\mu$,$\sigma$,$\rho_{XY}$
Covariance $cov_{X_{1}X_{2}}$ Feature interdependence min,max,$\mu$,$\sigma$,$cov_{XY}$
Concentration $\tau_{X_{1}X_{2}}$ Feature interdependence [10] min,max,$\mu$,$\sigma$,$\tau_{XY}$
Sparsity sparsity(X) Degree of discreteness [11] min,max,$\mu$,$\sigma$
Gravity gravity(X) Inter-class dispersion [12]
ANOVA p-value $p_{val_{\texttt{X}_{1}X_{2}}}$ Feature redundancy $p_{val_{XY}}$\citep{soares+04}
Coeff. of variation $\frac{\sigma_{Y}}{\mu_{Y}}$ Variation in target [13]
PCA $\rho_{\lambda_{1}}$ $\sqrt{\frac{\lambda_{1}}{1+\lambda_{1}}}$ Variance in first PC $\frac{\lambda_{1}}{\sum_{i} \lambda_{i}}$\citep{<re[4]</ref>f>}
PCA skewness Skewness of first PC \citep{feurer2014using} PCA kurtosis
PCA 95\% $\frac{dim_{95\% var}}{p}$ Intrinsic dimensionality [14]
Class probability $P(\texttt{C})$ Class distribution min,max,$\mu$,$\sigma$
informational-theoretic
Class entropy $H(\texttt{C})$ Class imbalance
Norm. entropy $\frac{H(\texttt{X})}{log_{2}n}$ Feature informativeness [15] min,max,$\mu$,$\sigma$
Mutual inform. $MI(\texttt{C},\texttt{X})$ Feature importance min,max,$\mu$,$\sigma$
Uncertainty coeff. $\frac{MI(\texttt{C},\texttt{X})}{H(\texttt{C})}$ [16] min,max,$\mu$,$\sigma$
Equiv. nr. feats $\frac{H(C)}{\overline{MI(C,X)}}$ Intrinsic dimensionality
Noise-signal ratio $\frac{\overline{H(X)}-\overline{MI(C,X)}}{\overline{MI(C,X)}}$ Noisiness of data
complexity
Fisher's discrimin. $\frac{(\mu_{c1}-\mu_{c2})^{2}}{\sigma_{c1}^{2}-\sigma_{c2}^{2}}$ Separability classes $c_{1},c_{2}$
Volume of overlap Class distribution overlap [17]
Concept variation Task complexity [18]
Data consistency Data quality [19]
model-based
Nr nodes, leaves [math]|\eta|,|\psi|[/math] Concept complexity [20] Tree depth
Branch length Concept complexity min,max,$\mu$,$\sigma$
Nodes per feature [math]|\eta_{X}|[/math] Feature importance min,max,$\mu$,$\sigma$
Leaves per class [math]\frac{|\psi_{c}|}{|\psi|}[/math] Class complexity [21] min,max,$\mu$,$\sigma$
Leaves agreement [math]\frac{n_{\psi_{i}}}{n}[/math] Class separability [22] min,max,$\mu$,$\sigma$
Information gain Feature importance min,max,$\mu$,$\sigma$, gini
landmarks
Landmarker(1NN) $P(\theta_{1NN},t_{j})$ Data sparsity [23] See \citet{Pfahringer:2000p553}
Landmarker(Tree) $P(\theta_{Tree},t_{j})$ Data separability Stump,RandomTree
Landmarker(Lin) $P(\theta_{Lin},t_{j})$ Linear separability Lin.Disciminant
Landmarker(NB) $P(\theta_{NB},t_{j})$ Feature independence See [24]
Relative LM $P_{a,j} - P_{b,j}$ Probing performance [25]
Subsample LM $P(\theta_{i},t_{j},s_{t})$ Probing performance [26]

Непрерывные фичи $X$ и таргет $Y$ имеют медиану $\mu_{X}$, стандартное отклонение $\sigma_{X}$ и дисперсию $\sigma^{2}_{X}$. Категориальные фичи $\texttt{X}$ и класс $\texttt{C}$ имеют категориальные значения $\pi_{i}$, условные вероятности $\pi_{i|j}$, совместные вероятности $\pi_{i,j}$, предельные вероятности $\pi_{i+}=\sum_{j}\pi_{ij}$, энтропию $H(\texttt{X})=-\sum_{i}\pi_{i+}log_{2}(\pi_{i+})$.

Многие мета-фичи вычисляются по одиночным фичам или комбинации фичей, и должны быть агрегированы через min,max,$\mu$,$\sigma$,quartiles или гистограммами.

Во время вычисления похожести задач важно нормализовать все мета-признаки, использовать отбор признаков [27] или использовать уменьшение размерности (PCA, например).

Примечания

  1. Wolpert and Macready, 1996
  2. Giraud-Carrier and Provost, 2005
  3. Datasets meta-feature description for recommending feature selection algorithm
  4. [1]
  5. [2]
  6. [3]
  7. Donald Michie, David J. Spiegelhalter, Charles C. Taylor, and John Campbell. Machine Learning, Neural and Statistical Classification, 1994
  8. A. Kalousis. Algorithm Selection via Meta-Learning. PhD thesis, University of Geneva, Department of Computer Science, 2002
  9. Peter J. Rousseeuw and Mia Hubert. Robust statistics for outlier detection. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011.
  10. Alexandros Kalousis and Melanie Hilario. Model selection via meta-learning: a comparative study.Intl Journ. on Artificial Intelligence Tools, 2001.
  11. Mostafa A. Salama, Aboul~Ella Hassanien, and Kenneth Revett. Employment of neural network and rough set in meta-learning, 2013.
  12. Shawkat Ali and Kate~A. Smith-Miles. On learning algorithm selection for classification. Applied Soft Computing, 2006.
  13. C. Soares, P. Brazdil, and P. Kuba. A meta-learning method to select the kernel width in support vector regression, 2004.
  14. R ́emi Bardenet, M ́aty ́as Brendel, Bal ́azs K ́egl, and Michele Sebag. Collaborative hyperparameter tuning. In Proceedings of ICML 2013, pages 199–207, 2013
  15. Ciro Castiello, Giovanna Castellano, and Anna~Maria Fanelli. Meta-data: {C}haracterization of input features for meta-learning, pages 457 -- 468, 2005.
  16. Feature importance A. Agresti. Categorical Data Analysis. Wiley Interscience, 2002.
  17. Tin Kam Ho and Mitra Basu. Complexity measures of supervised classification problems. Pattern Analysis and Machine Intellig, 2002.
  18. R. Vilalta. Understanding accuracy performance through concept characterization and algorithm analysis. ICML Workshop on Recent Advances in Meta-Learning and Future Work, 1999.
  19. C K{\"o}pf and I Iglezakis. Combination of task description strategies and case base properties for meta-learning, 2002.
  20. Y Peng, P Flach, C Soares, and P Brazdil. Improved dataset characterisation for meta-learning, 2002.
  21. Andray Filchenkov and Arseniy Pendryak. Dataset metafeature description for recommending feature selection. In \emph{ISMW FRUCT}, pages 11--18, 2015.
  22. Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning by landmarking various learning algorithms.In \emph{17th International Conference on Machine Learning (ICML), 2000.
  23. Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning by landmarking various learning algorithms.In \emph{17th International Conference on Machine Learning (ICML)}, pages 743 -- 750, 2000.
  24. Daren Ler, Irena Koprinska, and Sanjay Chawla. Utilizing regression-based landmarkers within a meta-learning framework for algorithm selection. \emph{Technical Report 569. University of Sydney}, pages 44--51, 2005.
  25. J F{\"u}rnkranz and J Petrak. An evaluation of landmarking variants. \emph{ECML/PKDD 2001 Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning}, pages 57--68, 2001.
  26. Taciana AF Gomes, Ricardo BC Prud{\^e}ncio, Carlos Soares, Andr{\'e} LD Rossi and Andr{\'e} Carvalho. Combining meta-learning and search techniques to select parameters for support vector machines, 2012.
  27. L Todorovski and S Dzeroski. Experiments in meta-level learning with ILP. Lecture Notes in Computer Science, 1704:98–106, 1999.

Источники информации