Neural Style Transfer — различия между версиями
(→Пример кода на PyTorch) |
(→Пример кода на PyTorch) |
||
Строка 60: | Строка 60: | ||
<math>L_{style}(S, G) = \sum\limits_{l=0}^L w_l * L_{GM}(S, G, l)</math> | <math>L_{style}(S, G) = \sum\limits_{l=0}^L w_l * L_{GM}(S, G, l)</math> | ||
− | == Пример кода на | + | == Пример кода на Python == |
− | Content Loss | + | '''Content Loss''' |
class ContentLoss(nn.Module): | class ContentLoss(nn.Module): | ||
− | + | def __init__(self, target,): | |
− | + | super(ContentLoss, self).__init__() | |
− | + | <font color="green"># we 'detach' the target content from the tree used</font> | |
− | + | <font color="green"># to dynamically compute the gradient: this is a stated value,</font> | |
− | + | <font color="green"># not a variable. Otherwise the forward method of the criterion</font> | |
− | + | <font color="green"># will throw an error.</font> | |
− | + | self.target = target.detach() | |
− | + | def forward(self, input): | |
− | + | self.loss = F.mse_loss(input, self.target) | |
− | + | return input | |
− | Style Loss | + | '''Style Loss''' |
− | + | def gram_matrix(input): | |
− | + | a, b, c, d = input.size() # a=batch size(=1) | |
− | + | <font color="green"># b=number of feature maps</font> | |
− | + | <font color="green"># (c,d)=dimensions of a f. map (N=c*d)</font> | |
− | + | features = input.view(a * b, c * d) # resise F_XL into \hat F_XL | |
− | + | G = torch.mm(features, features.t()) # compute the gram product | |
− | + | <font color="green"># we 'normalize' the values of the gram matrix</font> | |
− | + | <font color="green"># by dividing by the number of element in each feature maps.</font> | |
− | + | return G.div(a * b * c * d) | |
class StyleLoss(nn.Module): | class StyleLoss(nn.Module): | ||
− | + | def __init__(self, target_feature): | |
− | + | super(StyleLoss, self).__init__() | |
− | + | self.target = gram_matrix(target_feature).detach() | |
− | + | def forward(self, input): | |
− | + | G = gram_matrix(input) | |
− | + | self.loss = F.mse_loss(G, self.target) | |
− | + | return input | |
− | Importing the Model | + | '''Importing the Model''' |
cnn = models.vgg19(pretrained=True).features.to(device).eval() | cnn = models.vgg19(pretrained=True).features.to(device).eval() | ||
+ | '''Normalization''' | ||
+ | cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) | ||
+ | cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) | ||
+ | |||
+ | <font color="green"># create a module to normalize input image so we can easily put it in a</font> | ||
+ | <font color="green"># nn.Sequential</font> | ||
+ | class Normalization(nn.Module): | ||
+ | def __init__(self, mean, std): | ||
+ | super(Normalization, self).__init__() | ||
+ | <font color="green"># .view the mean and std to make them [C x 1 x 1] so that they can</font> | ||
+ | <font color="green"># directly work with image Tensor of shape [B x C x H x W].</font> | ||
+ | <font color="green"># B is batch size. C is number of channels. H is height and W is width.</font> | ||
+ | self.mean = torch.tensor(mean).view(-1, 1, 1) | ||
+ | self.std = torch.tensor(std).view(-1, 1, 1) | ||
+ | |||
+ | def forward(self, img): | ||
+ | <font color="green"># normalize img</font> | ||
+ | return (img - self.mean) / self.std | ||
+ | '''Adding our content loss and style loss layers''' | ||
+ | <font color="green"># desired depth layers to compute style/content losses :</font> | ||
+ | content_layers_default = ['conv_4'] | ||
+ | style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] | ||
+ | |||
+ | def get_style_model_and_losses(cnn, normalization_mean, normalization_std, | ||
+ | style_img, content_img, | ||
+ | content_layers=content_layers_default, | ||
+ | style_layers=style_layers_default): | ||
+ | cnn = copy.deepcopy(cnn) | ||
+ | |||
+ | <font color="green"># normalization module</font> | ||
+ | normalization = Normalization(normalization_mean, normalization_std).to(device) | ||
+ | |||
+ | <font color="green"># just in order to have an iterable access to or list of content/style losses</font> | ||
+ | content_losses = [] | ||
+ | style_losses = [] | ||
+ | |||
+ | <font color="green"># assuming that cnn is a nn.Sequential, so we make a new nn.Sequential</font> | ||
+ | <font color="green"># to put in modules that are supposed to be activated sequentially</font> | ||
+ | model = nn.Sequential(normalization) | ||
+ | |||
+ | i = 0 <font color="green"># increment every time we see a conv</font> | ||
+ | for layer in cnn.children(): | ||
+ | if isinstance(layer, nn.Conv2d): | ||
+ | i += 1 | ||
+ | name = 'conv_{}'.format(i) | ||
+ | elif isinstance(layer, nn.ReLU): | ||
+ | name = 'relu_{}'.format(i) | ||
+ | <font color="green"># The in-place version doesn't play very nicely with the ContentLoss</font> | ||
+ | <font color="green"># and StyleLoss we insert below. So we replace with out-of-place</font> | ||
+ | <font color="green"># ones here.</font> | ||
+ | layer = nn.ReLU(inplace=False) | ||
+ | elif isinstance(layer, nn.MaxPool2d): | ||
+ | name = 'pool_{}'.format(i) | ||
+ | elif isinstance(layer, nn.BatchNorm2d): | ||
+ | name = 'bn_{}'.format(i) | ||
+ | else: | ||
+ | raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) | ||
+ | |||
+ | model.add_module(name, layer) | ||
+ | |||
+ | if name in content_layers: | ||
+ | <font color="green"># add content loss:</font> | ||
+ | target = model(content_img).detach() | ||
+ | content_loss = ContentLoss(target) | ||
+ | model.add_module("content_loss_{}".format(i), content_loss) | ||
+ | content_losses.append(content_loss) | ||
+ | |||
+ | if name in style_layers: | ||
+ | <font color="green"># add style loss:</font> | ||
+ | target_feature = model(style_img).detach() | ||
+ | style_loss = StyleLoss(target_feature) | ||
+ | model.add_module("style_loss_{}".format(i), style_loss) | ||
+ | style_losses.append(style_loss) | ||
− | + | <font color="green"># now we trim off the layers after the last content and style losses</font> | |
− | + | for i in range(len(model) - 1, -1, -1): | |
− | + | if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss): | |
− | + | break | |
− | + | ||
− | + | model = model[:(i + 1)] | |
− | + | ||
− | + | return model, style_losses, content_losses | |
+ | |||
+ | '''Gradient Descent''' | ||
+ | def get_input_optimizer(input_img): | ||
+ | <font color="green"># this line to show that input is a parameter that requires a gradient</font> | ||
+ | optimizer = optim.LBFGS([input_img.requires_grad_()]) | ||
+ | return optimizer | ||
− | + | '''Run algorithm''' | |
− | ''' | + | def run_style_transfer(cnn, normalization_mean, normalization_std, |
+ | content_img, style_img, input_img, num_steps=300, | ||
+ | style_weight=1000000, content_weight=1): | ||
+ | print('Building the style transfer model..') | ||
+ | model, style_losses, content_losses = get_style_model_and_losses(cnn, | ||
+ | normalization_mean, normalization_std, style_img, content_img) | ||
+ | optimizer = get_input_optimizer(input_img) | ||
+ | |||
+ | run = [0] | ||
+ | while run[0] <= num_steps: | ||
+ | |||
+ | def closure(): | ||
+ | <font color="green"># correct the values of updated input image</font> | ||
+ | input_img.data.clamp_(0, 1) | ||
+ | |||
+ | optimizer.zero_grad() | ||
+ | model(input_img) | ||
+ | style_score = 0 | ||
+ | content_score = 0 | ||
+ | |||
+ | for sl in style_losses: | ||
+ | style_score += sl.loss | ||
+ | for cl in content_losses: | ||
+ | content_score += cl.loss | ||
+ | |||
+ | style_score *= style_weight | ||
+ | content_score *= content_weight | ||
+ | |||
+ | loss = style_score + content_score | ||
+ | loss.backward() | ||
+ | |||
+ | run[0] += 1 | ||
+ | if run[0] % 50 == 0: | ||
+ | print("run {}:".format(run)) | ||
+ | print('Style Loss : {:4f} Content Loss: {:4f}'.format( | ||
+ | style_score.item(), content_score.item())) | ||
+ | print() | ||
+ | |||
+ | return style_score + content_score | ||
+ | |||
+ | optimizer.step(closure) | ||
+ | |||
+ | <font color="green"># a last correction...</font> | ||
+ | input_img.data.clamp_(0, 1) | ||
+ | |||
+ | return input_img | ||
− | + | <font color="green"># run style transfer</font> | |
− | + | output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std, | |
− | + | content_img, style_img, input_img) | |
− | |||
− | |||
==См. также== | ==См. также== |
Версия 05:02, 18 апреля 2019
Содержание
Описание алгоритма
Алгоритм нейронного переноса стиля[1] (англ. Neural Style Transfer), разработанный Леоном Гатисом, Александром Экером и Матиасом Бетге, позволяет получить изображение и воспроизводить его в новом художественном стиле. Алгоритм берет три изображения, входное изображение (англ. input image), изображение контента (англ. content image) и изображение стиля (англ. style image), и изменяет входные данные так, чтобы они соответствовали содержанию изображения контента и художественному стилю изображения стиля. Авторами в качестве модели сверточной нейронной сети предлагается использовать сеть VGG16.
Принцип работы алгоритма
Рассмотрим 1-й сверточный слой (англ. convolution layer) VGG16, который использует ядро 3x3 и обучает 64 карты признаков (англ. feature map) для генерации представления изображения размерности 224x224x64, принимая 3-канальное изображение размером 224x224 в качестве входных данных (Рисунок 2). Во время обучения эти карты признаков научились обнаруживать простые шаблоны, например, такие как прямые линии, окружности или даже не имеющие никакого смысла для человеческого глаза шаблоны, которые тем не менее имеют огромное значение для этой модели. Такое "обнаружение" шаблонов называется обучением представления признаков. Теперь давайте рассмотрим 10-й сверточный слой VGG16, который использует ядро 3x3 с 512 картами признаков для обучения и в итоге генерирует вывод представления изображения размерности 28x28x512. Нейроны 10-го слоя уже могут обнаруживать более сложные шаблоны такие как, например, колесо автомобиля, окно или дерево и т.д.
Собственно вышеперечисленные свойства характерны для любой сверточной нейронной сети, работа которой обычно интерпретируется как переход от конкретных особенностей изображения к более абстрактным деталям, и далее к ещё более абстрактным деталям вплоть до выделения понятий высокого уровня. При этом сеть самонастраивается и вырабатывает необходимую иерархию абстрактных признаков (последовательности карт признаков), фильтруя маловажные детали и выделяя существенное.
Такая природа представления кодирования сама по себе является ключом к передаче стиля, который используется для вычисления функции потерь между сгенерированным изображением относительно изображения контента и изображения стиля. При обучении модели более десяти тысяч изображений на класс модель может генерировать аналогичное представление признаков для множества различных изображений, если они принадлежат к одному классу или имеют схожий контент или стиль.
Следовательно, имеет смысл использовать разницу в значении представления признаков сгенерированного изображения по содержанию и по стилю изображения, чтобы направлять итерации, через которые мы производим само сгенерированное изображение, но как убедиться, что изображение с содержанием C и сгенерированное изображение G похожи по своему содержанию, а не по стилю, в то время как сгенерированное изображение наследует только похожее представление стиля изображения стиля S, а не само изображение стиля в целом. Это решается разделением функции потерь на две части: одна — потеря контента, а другая — потеря стиля.
Функция потерь
В уравнении выше, чтобы получить общую потерю
нужно рассчитать потерю содержимого и потерю стиля , а также и — гиперпараметры, которые используются для определения весов для каждого типа потерь, то есть эти параметры можно представить просто как "рычаги" для управления тем, сколько контента / стиля мы хотим наследовать в сгенерированном изображении.Во время каждой итерации все три изображения, передаются через модель VGG16. Значения функции активации нейронов, которые кодируют представление признаков данного изображения на определенных слоях, принимаются как входные данные для этих двух функций потерь. Также стоит добавить: изначально мы случайным образом инициализируем сгенерированное изображение, например, матрицей случайного шума такого же разрешения, как и изображение контента. С каждой итерацией мы изменяем сгенерированное изображение, чтобы минимизировать общую потерю L.
Функция потери контента
Возьмем функциональное представление 7-го сверточного слой VGG16. Чтобы вычислить потерю контента, пропускаем изображение контента и сгенерированное изображение через VGG16 и получаем значения функции активации (выходы) 7-го слоя для обоих этих изображений. После каждого сверточного слоя идет ReLU, поэтому мы будем обозначать выход этого слоя в целом как relu_3_3 (поскольку это выход третьего сверточного слоя третьего набора / блока сверток) (Рисунок 2). Наконец, мы находим L2-норму поэлементного вычитания между этими двумя матрицами значений функции активации следующим образом:
Это поможет сохранить исходный контент в сгенерированном изображении, а также минимизировать разницу в представлении признаков, которое логически фокусируется на разнице между содержимым обоих изображений.
Функция потери стиля
В отличии от потери контента потерю стиля нельзя рассчитать с помощью разницы значений функции активации нейронов. Необходимо найти корреляцию между значениями функции активации по разным каналам одного и того же слоя. И для этого авторы алгоритма предлагают воспользоваться матрицей Грама.
Матрица Грама
Рассмотрим, как мы передаем наше изображение стиля через VGG16 и получаем значения функции активации из 7-го уровня, который генерирует матрицу представления объектов размером 56x56x256. В этом трехмерном массиве имеется 256 каналов размером 56x56 каждый. Теперь предположим, что есть канал A, чьи блоки активации могут активироваться, когда они сталкиваются с разделом изображения, содержащим коричнево-черные полосы, а затем есть канал B, чьи блоки активации могут активироваться, когда они сталкиваются с чем-то похожим на глазное яблоко. Если оба этих канала A и B активируются вместе для одного и того же входа, существует высокая вероятность того, что изображение может содержать лицо тигра (поскольку у него было два канала с высокими значениями, которые активируются для глазного яблока и коричнево-черных полос). Теперь, если оба эти канала будут запущены с высокими значениями активации, это означает, что они будут иметь высокую корреляцию по сравнению с корреляцией между каналом A и С, где канал С может активироваться, когда он видит ромбовидный шаблон.
Таким образом, чтобы получить корреляцию всех этих каналов друг с другом, нам нужно вычислить нечто называемое матрицей Грама, будем использовать ее для измерения степени корреляции между каналами, которая позже будет служить мерой самого стиля. Рисунок 4 помогает лучше понять как рассчитывается матрица Грама на примере.
Функция потерь на основе корреляции матриц Грама
Теперь, как вы можете видеть, как каждый элемент матрицы Грама содержит меру корреляции всех каналов относительно друг друга. Обозначим матрицу Грама стилевого изображения слоя
как , а матрицу Грама сгенерированного изображения того же слоя . Обе матрицы были вычислены из одного и того же слоя, следовательно, с использованием одного и того же числа каналов, что привело к тому, что итоговая матрица размера . Теперь, если мы найдем сумму квадратов разности или L2-норму вычитания элементов этих двух матриц и попытаемся минимизировать ее, то в конечном итоге это приведет к минимизации разницы между изображением стиля и сгенерированным изображением.
В вышеприведенном уравнении
представляет номер канала в карте признаков / выходных данных уровня , а представляет карты признаков / выходных данных слоя .Так как при вычислении потери стиля мы используем несколько уровней активации, это позволяет назначать разные весовые коэффициенты для потери на каждом уровне.
Пример кода на Python
Content Loss
class ContentLoss(nn.Module): def __init__(self, target,): super(ContentLoss, self).__init__() # we 'detach' the target content from the tree used # to dynamically compute the gradient: this is a stated value, # not a variable. Otherwise the forward method of the criterion # will throw an error. self.target = target.detach() def forward(self, input): self.loss = F.mse_loss(input, self.target) return input
Style Loss
def gram_matrix(input): a, b, c, d = input.size() # a=batch size(=1) # b=number of feature maps # (c,d)=dimensions of a f. map (N=c*d) features = input.view(a * b, c * d) # resise F_XL into \hat F_XL G = torch.mm(features, features.t()) # compute the gram product # we 'normalize' the values of the gram matrix # by dividing by the number of element in each feature maps. return G.div(a * b * c * d)
class StyleLoss(nn.Module): def __init__(self, target_feature): super(StyleLoss, self).__init__() self.target = gram_matrix(target_feature).detach() def forward(self, input): G = gram_matrix(input) self.loss = F.mse_loss(G, self.target) return input
Importing the Model
cnn = models.vgg19(pretrained=True).features.to(device).eval()
Normalization
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) # create a module to normalize input image so we can easily put it in a # nn.Sequential class Normalization(nn.Module): def __init__(self, mean, std): super(Normalization, self).__init__() # .view the mean and std to make them [C x 1 x 1] so that they can # directly work with image Tensor of shape [B x C x H x W]. # B is batch size. C is number of channels. H is height and W is width. self.mean = torch.tensor(mean).view(-1, 1, 1) self.std = torch.tensor(std).view(-1, 1, 1) def forward(self, img): # normalize img return (img - self.mean) / self.std
Adding our content loss and style loss layers
# desired depth layers to compute style/content losses : content_layers_default = ['conv_4'] style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] def get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img, content_layers=content_layers_default, style_layers=style_layers_default): cnn = copy.deepcopy(cnn) # normalization module normalization = Normalization(normalization_mean, normalization_std).to(device) # just in order to have an iterable access to or list of content/style losses content_losses = [] style_losses = [] # assuming that cnn is a nn.Sequential, so we make a new nn.Sequential # to put in modules that are supposed to be activated sequentially model = nn.Sequential(normalization) i = 0 # increment every time we see a conv for layer in cnn.children(): if isinstance(layer, nn.Conv2d): i += 1 name = 'conv_{}'.format(i) elif isinstance(layer, nn.ReLU): name = 'relu_{}'.format(i) # The in-place version doesn't play very nicely with the ContentLoss # and StyleLoss we insert below. So we replace with out-of-place # ones here. layer = nn.ReLU(inplace=False) elif isinstance(layer, nn.MaxPool2d): name = 'pool_{}'.format(i) elif isinstance(layer, nn.BatchNorm2d): name = 'bn_{}'.format(i) else: raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) model.add_module(name, layer) if name in content_layers: # add content loss: target = model(content_img).detach() content_loss = ContentLoss(target) model.add_module("content_loss_{}".format(i), content_loss) content_losses.append(content_loss) if name in style_layers: # add style loss: target_feature = model(style_img).detach() style_loss = StyleLoss(target_feature) model.add_module("style_loss_{}".format(i), style_loss) style_losses.append(style_loss) # now we trim off the layers after the last content and style losses for i in range(len(model) - 1, -1, -1): if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss): break model = model[:(i + 1)] return model, style_losses, content_losses
Gradient Descent
def get_input_optimizer(input_img): # this line to show that input is a parameter that requires a gradient optimizer = optim.LBFGS([input_img.requires_grad_()]) return optimizer
Run algorithm
def run_style_transfer(cnn, normalization_mean, normalization_std, content_img, style_img, input_img, num_steps=300, style_weight=1000000, content_weight=1): print('Building the style transfer model..') model, style_losses, content_losses = get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img) optimizer = get_input_optimizer(input_img) run = [0] while run[0] <= num_steps: def closure(): # correct the values of updated input image input_img.data.clamp_(0, 1) optimizer.zero_grad() model(input_img) style_score = 0 content_score = 0 for sl in style_losses: style_score += sl.loss for cl in content_losses: content_score += cl.loss style_score *= style_weight content_score *= content_weight loss = style_score + content_score loss.backward() run[0] += 1 if run[0] % 50 == 0: print("run {}:".format(run)) print('Style Loss : {:4f} Content Loss: {:4f}'.format( style_score.item(), content_score.item())) print() return style_score + content_score optimizer.step(closure) # a last correction... input_img.data.clamp_(0, 1) return input_img # run style transfer output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std, content_img, style_img, input_img)