Алгоритм A* — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
(Реализация)
 
(не показано 27 промежуточных версий 7 участников)
Строка 1: Строка 1:
Алгоритм '''А*'''("A star", "А звёздочка") -- информированный  алгоритм поиска, который находит во взвешенном графе маршрут наименьшей стоимости от начальной вершины до выбранной конечной.
+
Алгоритм '''А*''' (англ. ''A star'') {{---}} алгоритм поиска, который находит во взвешенном графе маршрут наименьшей стоимости от начальной вершины до выбранной конечной.
==Эвристика==
+
==Описание==
Все вершины графа перевзвешиваются и <tex>f(v) = g(v) + h(v)</tex>, где <tex>g(v)</tex> - наименьшая стоимость пути в v из стартовой вершины, <tex>h(v)</tex> - эвристическое приближение стоимости пути от v до конечной цели. <tex>h(v)</tex> должна быть эвристически допустимой, то есть не должна переоценивать рассояние до цели. Например, если наш граф является некоторй картой, разбитой сеткой, то эвристику можно назначить минимальным числом перемещений из клетки в клетку.
+
[[Файл:Astar_progress_animation.gif|right|frame|Пример работы А*. Пустые кружки принадлежат к открытому списку, а окрашенные к закрытому.]]
К примеру, если <tex>(h(v) == 0)</tex>, то А* превращается в [http://chernykh.net/images/stories/Person/deiksteira.jpg Дейкстру ]. Если <tex>h(v)</tex> всегда меньше истинной стоимости пути до цели, то А* гарантированно найдет кратчайший путь, причем чем меньше разница между эвристикой и истинной стоимостью, тем меньше вершин рассмотрит алгоритм. Если выйдет так, что эвристика превысила истинную стоимость, то А* будет работать быстрее, но возможно найдет не лучший путь, хотя его можно считать "хорошим" и если производительность предпочтительнее точности можно использовать такую эвристику.
+
В процессе работы алгоритма для вершин рассчитывается функция <tex>f(v) = g(v) + h(v)</tex>, где  
 +
*<tex>g(v)</tex> {{---}} наименьшая стоимость пути в <tex>v</tex> из стартовой вершины,  
 +
*<tex>h(v)</tex> {{---}} эвристическое приближение стоимости пути от <tex>v</tex> до конечной цели.  
  
==Псевдокод==
+
Фактически, функция <tex>f(v)</tex> {{---}} длина пути до цели, которая складывается из пройденного расстояния <tex>g(v)</tex> и оставшегося расстояния <tex>h(v)</tex>. Исходя из этого, чем меньше значение <tex>f(v)</tex>, тем раньше мы откроем вершину <tex>v</tex>, так как через неё мы предположительно достигнем расстояние до цели быстрее всего.
void A*(start,goal)
+
Открытые алгоритмом вершины можно хранить в очереди с приоритетом по значению <tex>f(v)</tex>. А* действует подобно [[Алгоритм Дейкстры | алгоритму Дейкстры]] и просматривает среди всех маршрутов ведущих к цели сначала те, которые благодаря имеющейся информации (эвристическая функция) в данный момент являются наилучшими.
{
+
<br clear="all">
    closed := {}; // Множество вершин расстояние до которых мы уже оценили
+
==Свойства==
    open.push(start);// Очередь с приоритетом  
+
Чтобы A* был оптимален, выбранная функция <tex>h(v)</tex> должна быть '''допустимой''' эвристической функцией.
    f[start] = g[start] + h[start];
+
{{Определение
    parent[start] = start;
+
|definition=Говорят, что эвристическая оценка <tex>h(v)</tex> '''допустима''', если для любой вершины <tex>v</tex> значение <tex>h(v)</tex> меньше или равно весу кратчайшего пути от <tex>v</tex> до цели.
    while (open.size() != 0)
+
}}
    {
 
        x := open.pop();
 
        if (x == goal)
 
            return succsess(x);// Кратчайший путь найден       
 
        closed.push(x); 
 
        for (y : xy in E)
 
        {
 
            if (y in closed)    
 
                continue;
 
            tmp := g[x] + d[x,y]  // Стоимость пути до y
 
            if (y not in open)
 
            {
 
                open.push(y);
 
                tentative_is_better = true;
 
            }
 
            else           
 
                if (tmp < g[y])               
 
                    tentative_is_better := true 
 
                else
 
                    tentative_is_better := false 
 
            if (tentative_is_better == true)//  
 
            {
 
                parent[y] = x;
 
                g[y] = tmp;
 
                f[y] = g[y] + h[y];
 
            }
 
        }
 
    }
 
    return failure; // Наша цель недостижима из start
 
}
 
  
==Доказательство оптимальности и корректности==
+
Допустимая оценка является оптимистичной, потому что она предполагает, что стоимость решения меньше, чем оно есть на самом деле. <br>
Алгоритм A* и допустим, и обходит при этом минимальное количество вершин, благодаря тому, что он работает с «оптимистичной» оценкой пути через вершину. Оптимистичной в том смысле, что, если он пойдёт через эту вершину, у алгоритма «есть шанс», что реальная стоимость результата будет равна этой оценке, но никак не меньше. Но, поскольку A* является информированным алгоритмом, такое равенство может быть вполне возможным.
+
Второе, более сильное условие {{---}} функция <tex>h(v)</tex> должна быть '''монотонной'''.
  
Когда A* завершает поиск, он, согласно определению, нашёл путь, истинная стоимость которого меньше, чем оценка стоимости любого пути через любой открытый узел. Но поскольку эти оценки являются оптимистичными, соответствующие узлы можно без сомнений отбросить. Иначе говоря, A* никогда не упустит возможности минимизировать длину пути, и потому является допустимым.
+
{{Определение
 +
|definition=Эвристическая функция <tex>h(v)</tex> называется '''монотонной''' (или '''преемственной'''), если для любой вершины <tex>v_1</tex> и ее потомка <tex>v_2</tex> разность <tex>h(v_1)</tex> и <tex>h(v_2)</tex> не превышает фактического веса ребра <tex>c(v_1, v_2)</tex> от <tex>v_1</tex> до <tex>v_2</tex>, а эвристическая оценка целевого состояния равна нулю.
 +
}}
  
Предположим теперь, что некий алгоритм B вернул в качестве результата путь, длина которого больше оценки стоимости пути через некоторую вершину. На основании эвристической информации, для алгоритма B нельзя исключить возможность, что этот путь имел и меньшую реальную длину, чем результат. Соответственно, пока алгоритм B просмотрел меньше вершин, чем A*, он не будет допустимым. Итак, A* проходит наименьшее количество вершин графа среди допустимых алгоритмов, использующих такую же точную (или менее точную) эвристику.
+
{{Теорема
 +
|statement=Любая монотонная эвристика допустима, однако обратное неверно.
 +
|proof=Пусть <tex>k(v)</tex> {{---}} длина кратчайшего пути из вершины <tex>v</tex> до цели.  
 +
Докажем индукцией по числу шагов до цели, что <tex>h(v) \leqslant k(v)</tex>.<br><br>
 +
Если до цели расстояние <tex>0</tex>, то <tex>v</tex> {{---}} цель и <tex>h(v) = 0 \leqslant k(v)</tex>.<br><br>
 +
Пусть <tex>v</tex> находится на расстоянии <tex>i</tex> от цели. Тогда существует потомок <tex>v'</tex>, который находится на кратчайшем пути от <tex>v</tex> до цели и <tex>v'</tex>лежит на расстоянии <tex>i - 1</tex> шагов до цели. Следовательно, <tex>h(v) \leqslant c(v, v') + h(v')</tex>. <br>
 +
По предположению, <tex>h(v') \leqslant k(v')</tex>. Следовательно, <tex>h(v) \leqslant c(v, v') + k(v') = k(v)</tex>. <br><br>Таким образом, монотонная эвристика <tex>h(v)</tex> допустима.
 +
}}
  
==Ссылки==
+
{{Утверждение
*[http://ru.wikipedia.org/wiki/Алгоритм_поиска_A* Алгоритм_поиска_A* Википедия]
+
|statement=Если <tex>h(v)</tex> монотонна, то последовательность значений <tex>f(v)</tex> на любом пути неубывает.
*[http://en.wikipedia.org/wiki/A*_search_algorithm A*_search_algorithm Wikipedia]
+
|proof=Доказательство следует из определения монотонности.<br>
*[http://theory.stanford.edu/~amitp/GameProgramming/ Статья о поиске кратчайших путей и различных оптимизациях А* в частности]
+
Пусть <tex>v'</tex> {{---}} потомок <tex>v</tex>, тогда <tex>g(v') = g(v) + c(v, v')</tex>. <br>Следовательно, <tex>f(v') = g(v') + h(v') = g(v) + c(v, v') + h(v') \geqslant g(v) + h(v) = f(v)</tex>.
*[http://dl.acm.org/citation.cfm?id=3830&coll=portal&dl=ACM Статья на ACM Digital Library]
+
}}
 +
 
 +
{{Утверждение
 +
|statement=Алгоритм A* является оптимальным, если функция <tex>h(v)</tex> монотонна.
 +
|proof=Последовательность вершин "развёрнутых" во время работы алгоритма находится в неубывающем порядке значений <tex>f</tex>. Поэтому очередная выбираемая вершина должна представлять собой оптимальное решение, поскольку все дальнейшие узлы будут, по меньшей мере, столь же дорогостоящими.
 +
}}
 +
 
 +
==Примеры эвристик==
 +
Поведение алгоритма сильно зависит от того, какая эвристика используется. В свою очередь, выбор эвристики зависит[[Файл:Diagonal.png|thumb|right|Пример А* на сетке с возможностью ходить в восьми напрвлениях]] от постановки задачи. Часто А* используется для моделирования перемещения по поверхности, покрытой координатной сеткой.
 +
 
 +
* Если мы можем перемещаться в четырех направлениях, то в качестве эвристики стоит выбрать манхэттенское расстояние<ref>[https://en.wikipedia.org/wiki/Manhattan_distance Wikipedia {{---}} Manhattan distance]</ref><br> <tex>h(v) = |{v.x-goal.x}| + |{v.y-goal.y}|</tex>.
 +
 
 +
* Расстояние Чебышева<ref>[https://ru.wikipedia.org/wiki/Расстояние_Чебышева Википедия {{---}} Расстояние Чебышева]</ref> применяется, когда к четырем направлениям добавляются диагонали:<br> <tex>h(v) = \max{(|{v.x-goal.x}|, |{v.y-goal.y}|)}</tex>.
 +
 
 +
* Если передвижение не ограничено сеткой, то можно использовать евклидово расстояние по прямой:<br> <tex>h(v) = \sqrt{(v.x-goal.x)^2 + (v.y-goal.y)^2}</tex>.
 +
 
 +
Также стоит обратить внимание на то как соотносятся <tex>f(v)</tex> и <tex>h(v)</tex>. Если они измеряются в разных величинах (например, <tex>g(v)</tex> {{---}} это расстояние в километрах, а <tex>h(v)</tex> {{---}} оценка времени пути в часах) А* может выдать некорректный результат.
 +
 
 +
==Реализация==
 +
В приведённой реализации:
 +
* <tex>Q</tex> {{---}} множество вершин, которые требуется рассмотреть,
 +
* <tex>U</tex> {{---}} множество рассмотренных вершин,
 +
* <tex>f[x]</tex> {{---}} значение эвристической функции "расстояние + стоимость" для вершины <tex>x</tex>,
 +
* <tex>g[x]</tex> {{---}} стоимость пути от начальной вершины до <tex>x</tex>,
 +
* <tex>h(x)</tex> {{---}} эвристическая оценка расстояния от вершины <tex>x</tex> до конечной вершины.
 +
На каждом этапе работы алгоритма из множества <tex>Q</tex> выбирается вершина с наименьшим значением эвристической функции и просматриваются её соседи. Для каждого из соседей обновляется расстояние, значение эвристической функции и он добавляется в множество <tex>Q</tex>.<br>
 +
Псевдокод:
 +
'''bool''' A*(start, goal)''':'''
 +
    U = <tex> \varnothing </tex>
 +
    Q = <tex> \varnothing </tex>
 +
    Q.push(start)
 +
    g[start] = 0
 +
    f[start] = g[start] + h(start)
 +
    '''while''' Q.size() != 0
 +
        current = вершина из <tex>Q</tex> с минимальным значением <tex>f</tex>
 +
        '''if''' current == goal
 +
            '''return''' ''true''                                          <font color="green">// нашли путь до нужной вершины</font>
 +
        Q.remove(current)
 +
        U.push(current)
 +
        '''for''' v : смежные с current вершины
 +
            tentativeScore = g[current] + d(current, v)          <font color="green">// d(current, v) {{---}} стоимость пути между current и v</font>
 +
            '''if''' <tex>v \in U</tex> '''and''' tentativeScore >= g[v]
 +
                '''continue'''
 +
            '''if''' <tex>v \notin U</tex> '''or''' tentativeScore < g[v]
 +
                parent[v] = current
 +
                g[v] = tentativeScore
 +
                f[v] = g[v] + h(v)
 +
                '''if''' <tex>v \notin Q</tex>
 +
                    Q.push(v)
 +
    '''return''' ''false''
 +
 
 +
==См. также==
 +
* [[Эвристики для поиска кратчайших путей]]
 +
* [[Алгоритм Флойда]]
 +
* [[Алгоритм Дейкстры]]
 +
* [[Алгоритм Форда-Беллмана]]
 +
 
 +
==Примечания==
 +
<references/>
 +
 
 +
==Источники информации==
 +
* С. Рассел, П. Норвиг {{---}} Искусственный интеллект. Современный подход, 2е издание
 +
* [https://ru.wikipedia.org/wiki/Алгоритм_поиска_A* Википедия {{---}} Алгоритм поиска A*]
 +
* [https://en.wikipedia.org/wiki/A*_search_algorithm Wikipedia {{---}} A* search algorithm]
 +
* [http://theory.stanford.edu/~amitp/GameProgramming/ Статья о поиске кратчайших путей]
 +
* [http://dl.acm.org/citation.cfm?id=3830&coll=portal&dl=ACM Generalized best-first search strategies and the optimality of A*]
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Кратчайшие пути в графах ]]
 
[[Категория: Кратчайшие пути в графах ]]

Текущая версия на 22:59, 6 мая 2019

Алгоритм А* (англ. A star) — алгоритм поиска, который находит во взвешенном графе маршрут наименьшей стоимости от начальной вершины до выбранной конечной.

Описание

Пример работы А*. Пустые кружки принадлежат к открытому списку, а окрашенные к закрытому.

В процессе работы алгоритма для вершин рассчитывается функция [math]f(v) = g(v) + h(v)[/math], где

  • [math]g(v)[/math] — наименьшая стоимость пути в [math]v[/math] из стартовой вершины,
  • [math]h(v)[/math] — эвристическое приближение стоимости пути от [math]v[/math] до конечной цели.

Фактически, функция [math]f(v)[/math] — длина пути до цели, которая складывается из пройденного расстояния [math]g(v)[/math] и оставшегося расстояния [math]h(v)[/math]. Исходя из этого, чем меньше значение [math]f(v)[/math], тем раньше мы откроем вершину [math]v[/math], так как через неё мы предположительно достигнем расстояние до цели быстрее всего. Открытые алгоритмом вершины можно хранить в очереди с приоритетом по значению [math]f(v)[/math]. А* действует подобно алгоритму Дейкстры и просматривает среди всех маршрутов ведущих к цели сначала те, которые благодаря имеющейся информации (эвристическая функция) в данный момент являются наилучшими.

Свойства

Чтобы A* был оптимален, выбранная функция [math]h(v)[/math] должна быть допустимой эвристической функцией.

Определение:
Говорят, что эвристическая оценка [math]h(v)[/math] допустима, если для любой вершины [math]v[/math] значение [math]h(v)[/math] меньше или равно весу кратчайшего пути от [math]v[/math] до цели.


Допустимая оценка является оптимистичной, потому что она предполагает, что стоимость решения меньше, чем оно есть на самом деле.
Второе, более сильное условие — функция [math]h(v)[/math] должна быть монотонной.


Определение:
Эвристическая функция [math]h(v)[/math] называется монотонной (или преемственной), если для любой вершины [math]v_1[/math] и ее потомка [math]v_2[/math] разность [math]h(v_1)[/math] и [math]h(v_2)[/math] не превышает фактического веса ребра [math]c(v_1, v_2)[/math] от [math]v_1[/math] до [math]v_2[/math], а эвристическая оценка целевого состояния равна нулю.


Теорема:
Любая монотонная эвристика допустима, однако обратное неверно.
Доказательство:
[math]\triangleright[/math]

Пусть [math]k(v)[/math] — длина кратчайшего пути из вершины [math]v[/math] до цели. Докажем индукцией по числу шагов до цели, что [math]h(v) \leqslant k(v)[/math].

Если до цели расстояние [math]0[/math], то [math]v[/math] — цель и [math]h(v) = 0 \leqslant k(v)[/math].

Пусть [math]v[/math] находится на расстоянии [math]i[/math] от цели. Тогда существует потомок [math]v'[/math], который находится на кратчайшем пути от [math]v[/math] до цели и [math]v'[/math]лежит на расстоянии [math]i - 1[/math] шагов до цели. Следовательно, [math]h(v) \leqslant c(v, v') + h(v')[/math].

По предположению, [math]h(v') \leqslant k(v')[/math]. Следовательно, [math]h(v) \leqslant c(v, v') + k(v') = k(v)[/math].

Таким образом, монотонная эвристика [math]h(v)[/math] допустима.
[math]\triangleleft[/math]
Утверждение:
Если [math]h(v)[/math] монотонна, то последовательность значений [math]f(v)[/math] на любом пути неубывает.
[math]\triangleright[/math]

Доказательство следует из определения монотонности.

Пусть [math]v'[/math] — потомок [math]v[/math], тогда [math]g(v') = g(v) + c(v, v')[/math].
Следовательно, [math]f(v') = g(v') + h(v') = g(v) + c(v, v') + h(v') \geqslant g(v) + h(v) = f(v)[/math].
[math]\triangleleft[/math]
Утверждение:
Алгоритм A* является оптимальным, если функция [math]h(v)[/math] монотонна.
[math]\triangleright[/math]
Последовательность вершин "развёрнутых" во время работы алгоритма находится в неубывающем порядке значений [math]f[/math]. Поэтому очередная выбираемая вершина должна представлять собой оптимальное решение, поскольку все дальнейшие узлы будут, по меньшей мере, столь же дорогостоящими.
[math]\triangleleft[/math]

Примеры эвристик

Поведение алгоритма сильно зависит от того, какая эвристика используется. В свою очередь, выбор эвристики зависит
Пример А* на сетке с возможностью ходить в восьми напрвлениях
от постановки задачи. Часто А* используется для моделирования перемещения по поверхности, покрытой координатной сеткой.
  • Если мы можем перемещаться в четырех направлениях, то в качестве эвристики стоит выбрать манхэттенское расстояние[1]
    [math]h(v) = |{v.x-goal.x}| + |{v.y-goal.y}|[/math].
  • Расстояние Чебышева[2] применяется, когда к четырем направлениям добавляются диагонали:
    [math]h(v) = \max{(|{v.x-goal.x}|, |{v.y-goal.y}|)}[/math].
  • Если передвижение не ограничено сеткой, то можно использовать евклидово расстояние по прямой:
    [math]h(v) = \sqrt{(v.x-goal.x)^2 + (v.y-goal.y)^2}[/math].

Также стоит обратить внимание на то как соотносятся [math]f(v)[/math] и [math]h(v)[/math]. Если они измеряются в разных величинах (например, [math]g(v)[/math] — это расстояние в километрах, а [math]h(v)[/math] — оценка времени пути в часах) А* может выдать некорректный результат.

Реализация

В приведённой реализации:

  • [math]Q[/math] — множество вершин, которые требуется рассмотреть,
  • [math]U[/math] — множество рассмотренных вершин,
  • [math]f[x][/math] — значение эвристической функции "расстояние + стоимость" для вершины [math]x[/math],
  • [math]g[x][/math] — стоимость пути от начальной вершины до [math]x[/math],
  • [math]h(x)[/math] — эвристическая оценка расстояния от вершины [math]x[/math] до конечной вершины.

На каждом этапе работы алгоритма из множества [math]Q[/math] выбирается вершина с наименьшим значением эвристической функции и просматриваются её соседи. Для каждого из соседей обновляется расстояние, значение эвристической функции и он добавляется в множество [math]Q[/math].
Псевдокод:

bool A*(start, goal):
    U = [math] \varnothing [/math]
    Q = [math] \varnothing [/math]
    Q.push(start)
    g[start] = 0
    f[start] = g[start] + h(start)
    while Q.size() != 0
        current = вершина из [math]Q[/math] с минимальным значением [math]f[/math]
        if current == goal
            return true                                           // нашли путь до нужной вершины
        Q.remove(current)
        U.push(current)
        for v : смежные с current вершины
            tentativeScore = g[current] + d(current, v)           // d(current, v) — стоимость пути между current и v 
            if [math]v \in U[/math] and tentativeScore >= g[v]
                continue
            if [math]v \notin U[/math] or tentativeScore < g[v]
                parent[v] = current
                g[v] = tentativeScore
                f[v] = g[v] + h(v)
                if [math]v \notin Q[/math]
                    Q.push(v)
    return false

См. также

Примечания

Источники информации