Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора — различия между версиями
Gaporf (обсуждение | вклад) (→Однозначные грамматики) |
Gaporf (обсуждение | вклад) (Исправил многоточия) |
||
Строка 69: | Строка 69: | ||
:Поскольку это дерево является деревом разбора, <tex>A \rightarrow \omega</tex> должно быть продукцией. Таким образом, <tex>A \Rightarrow_{lm} \omega</tex> есть одношаговое левое порождение <tex>\omega</tex> из <tex>A</tex>. | :Поскольку это дерево является деревом разбора, <tex>A \rightarrow \omega</tex> должно быть продукцией. Таким образом, <tex>A \Rightarrow_{lm} \omega</tex> есть одношаговое левое порождение <tex>\omega</tex> из <tex>A</tex>. | ||
− | '''Индукционный переход:''' Существует корень с отметкой <tex>A</tex> и сыновьями, отмеченными слева направо <tex>X_1X_2 \ | + | '''Индукционный переход:''' Существует корень с отметкой <tex>A</tex> и сыновьями, отмеченными слева направо <tex>X_1X_2 \ldots X_k</tex>. Символы <tex>X</tex> могут быть как терминалами, так и переменными. |
# Если <tex>X_i</tex> — терминал, то определим <tex>\omega_i</tex> как цепочку, состоящую из одного <tex>X_i</tex>. | # Если <tex>X_i</tex> — терминал, то определим <tex>\omega_i</tex> как цепочку, состоящую из одного <tex>X_i</tex>. | ||
# Если <tex>X_i</tex> — переменная, то она должна быть корнем некоторого поддерева с терминальной кроной, которую обозначим <tex>\omega_i</tex>. Заметим, что в этом случае высота поддерева меньше <tex>n</tex>, поэтому к нему применимо предположение индукции. Следовательно, существует левое порождение <tex>X_i \Rightarrow^{*}_{lm} \omega_i</tex>. | # Если <tex>X_i</tex> — переменная, то она должна быть корнем некоторого поддерева с терминальной кроной, которую обозначим <tex>\omega_i</tex>. Заметим, что в этом случае высота поддерева меньше <tex>n</tex>, поэтому к нему применимо предположение индукции. Следовательно, существует левое порождение <tex>X_i \Rightarrow^{*}_{lm} \omega_i</tex>. | ||
− | Заметим, что <tex>\omega = \omega_1\omega_2 \ | + | Заметим, что <tex>\omega = \omega_1\omega_2 \ldots \omega_k</tex>. |
Построим левое порождение цепочки <tex>\omega</tex> следующим образом: | Построим левое порождение цепочки <tex>\omega</tex> следующим образом: | ||
− | :Начнем с шага <tex>A \Rightarrow_{lm} X_1X_2\ | + | :Начнем с шага <tex>A \Rightarrow_{lm} X_1X_2\ldots X_k</tex>. |
− | :Затем для <tex>i = 1, 2, \ | + | :Затем для <tex>i = 1, 2, \ldots, k \ </tex> покажем, что имеет место следующее порождение: <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ldots\omega_iX_{i+1}X_{i+2}\ldots X_k</tex> |
Данное доказательство использует в действительности еще одну индукцию, на этот раз по <tex>i</tex>. | Данное доказательство использует в действительности еще одну индукцию, на этот раз по <tex>i</tex>. | ||
− | Для базиса <tex>i = 0</tex> мы уже знаем, что <tex>A \Rightarrow_{lm} X_1X_2\ | + | Для базиса <tex>i = 0</tex> мы уже знаем, что <tex>A \Rightarrow_{lm} X_1X_2\ldots X_k</tex>. |
− | Для индукции предположим, что существует следующее порождение: <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ | + | Для индукции предположим, что существует следующее порождение: <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ldots\omega_{i–1}X_iX_{i+1}\ldots X_k</tex> |
− | # Если <tex>X_i</tex> — терминал, то не делаем ничего, но в дальнейшем рассматриваем <tex>X_i</tex> как терминальную цепочку <tex>\omega_i</tex>. Таким образом, приходим к существованию следующего порождения. <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ | + | # Если <tex>X_i</tex> — терминал, то не делаем ничего, но в дальнейшем рассматриваем <tex>X_i</tex> как терминальную цепочку <tex>\omega_i</tex>. Таким образом, приходим к существованию следующего порождения. <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ldots\omega_iX_{i+1}X_{i+2}\ldots X_k</tex> |
− | # Если <tex>X_i</tex> является переменной, то продолжаем порождением <tex>\omega_i</tex> из <tex>X_i</tex> в контексте уже построенного порождения. Таким образом, если этим порождением является: <tex>X_i \Rightarrow_{lm} \alpha_1 \Rightarrow_{lm} \alpha_2\ | + | # Если <tex>X_i</tex> является переменной, то продолжаем порождением <tex>\omega_i</tex> из <tex>X_i</tex> в контексте уже построенного порождения. Таким образом, если этим порождением является: <tex>X_i \Rightarrow_{lm} \alpha_1 \Rightarrow_{lm} \alpha_2\ldots \Rightarrow_{lm} \omega_i</tex>, то продолжаем следующими порождениями: |
− | ::<tex>\omega_1\omega_2\ | + | ::<tex>\omega_1\omega_2\ldots\omega_{i–1}X_iX_{i+1}\ldots X_k \Rightarrow_{lm}</tex> |
− | ::<tex>\omega_1\omega_2\ | + | ::<tex>\omega_1\omega_2\ldots\omega_{i–1}\alpha_1X_{i+1}\ldots X_k \Rightarrow_{lm}</tex> |
− | ::<tex>\omega_1\omega_2\ | + | ::<tex>\omega_1\omega_2\ldots\omega_{i–1}\alpha_2X_{i+1}\ldots X_k \Rightarrow_{lm}</tex> |
− | ::<tex>\ | + | ::<tex>\ldots</tex> |
− | ::<tex>\omega_1\omega_2\ | + | ::<tex>\omega_1\omega_2\ldots\omega_iX_{i+1}X_{i+2}\ldots X_k</tex> |
− | Результатом является порождение <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ | + | Результатом является порождение <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ldots\omega_iX_{i+1}X_{i+2}\ldots X_k</tex>. |
Когда <tex>i = k</tex>, результат представляет собой левое порождение <tex>\omega</tex> из <tex>A</tex>. | Когда <tex>i = k</tex>, результат представляет собой левое порождение <tex>\omega</tex> из <tex>A</tex>. | ||
}} | }} |
Версия 20:38, 23 мая 2019
Содержание
Основные определения
Определение: |
Контекстно-свободной грамматикой (англ. сontext-free grammar) называется грамматика, у которой в левых частях всех правил стоят только одиночные нетерминалы. |
Определение: |
Контекстно-свободный язык (англ. context-free language) — язык, задаваемый контекстно-свободной грамматикой. |
Лево- и правосторонний вывод слова
Определение: |
Выводом слова (англ. derivation of a word) | называется последовательность строк, состоящих из терминалов и нетерминалов. Первая строка последовательности состоит из одного стартового нетерминала. Каждая последующая строка получена из предыдущей путем замены любого нетерминала по одному (любому) из правил, а последней строкой в последовательности является слово .
Пример:
Рассмотрим грамматику, выводящую все правильные скобочные последовательности.
- и — терминальные символы
- — стартовый нетерминал
Правила:
Выведем слово
:
Определение: |
Левосторонним выводом слова (англ. leftmost derivation) | называется такой вывод слова , в котором каждая последующая строка получена из предыдущей путем замены по одному из правил самого левого встречающегося в строке нетерминала.
Определение: |
Правосторонним выводом слова (англ. rightmost derivation) | называется такой вывод слова , в котором каждая последующая строка получена из предыдущей путем замены по одному из правил самого правого встречающегося в строке нетерминала.
Рассмотрим левосторонний вывод скобочной последовательности из примера:
Дерево разбора
Определение: |
Деревом разбора грамматики (англ. parse tree) называется дерево, в вершинах которого записаны терминалы или нетерминалы. Все вершины, помеченные терминалами, являются листьями. Все вершины, помеченные нетерминалами, имеют детей. Дети вершины, в которой записан нетерминал, соответствуют раскрытию нетерминала по одному любому правилу (в левой части которого стоит этот нетерминал) и упорядочены так же, как в правой части этого правила. |
Определение: |
Крона дерева разбора (англ. leaves of the parse tree) — множество терминальных символов, упорядоченное в соответствии с номерами их достижения при обходе дерева в глубину из корня. Крона дерева разбора представляет из себя слово языка, которое выводит это дерево. |
Построим дерево разбора скобочной последовательности из примера.
Теорема: |
Пусть — КС-грамматика. Предположим, что существует дерево разбора с корнем, отмеченным , и кроной , где . Тогда в грамматике существует левое порождение |
Доказательство: |
Используем индукцию по высоте дерева. База: Базисом является высота , наименьшая из возможных для дерева разбора с терминальной кроной.
Индукционный переход: Существует корень с отметкой и сыновьями, отмеченными слева направо . Символы могут быть как терминалами, так и переменными.
Заметим, что . Построим левое порождение цепочки следующим образом:
Данное доказательство использует в действительности еще одну индукцию, на этот раз по . Для базиса мы уже знаем, что .Для индукции предположим, что существует следующее порождение:
Результатом является порождение Когда . , результат представляет собой левое порождение из . |
Теорема: |
Для каждой грамматики и из цепочка имеет два разных дерева разбора тогда и только тогда, когда имеет два разных левых порождения из . |
Доказательство: |
|
Однозначные грамматики
Определение: |
Грамматика называется однозначной (англ. unambiguous grammar), если у каждого слова имеется не более одного дерева разбора в этой грамматике. |
Лемма: |
Пусть — однозначная грамматика. Тогда существует ровно один левосторонний (правосторонний) вывод. |
Доказательство: |
Очевидно, что по дереву разбора однозначно восстанавливается левосторонний(правосторонний) вывод. Поскольку каждое слово из языка выводится только одним деревом разбора, то существует только один левосторонний(правосторонний) вывод этого слова. |
Утверждение: |
Грамматика из примера не является однозначной. |
Выше уже было построено дерево разбора для слова . Построим еще одно дерево разбора для данного слова.Например, оно будет выглядеть так: Таким образом, существует слово, у которого есть более одного дерева разбора в данной грамматике эта грамматика не является однозначной. |
Утверждение: |
Существуют языки, которые можно задать одновременно как однозначными, так и неоднозначными грамматиками. |
Для доказательства достаточно привести однозначную грамматику для языка правильных скобочных последовательностей (неоднозначной грамматикой для данного языка является грамматика из примера выше). Рассмотрим грамматику:
Правила: Покажем, что эта грамматика однозначна. Для этого, используя индукцию, докажем, что для любого слова , являющегося правильной скобочной последовательностью, в данной грамматике существует только одно дерево разбора.База: Если , то оно выводится только по второму правилу для него существует единственное дерево разбора.Индукционный переход: Пусть и : и — правильная скобочная последовательность, у которой дерево разбора.
|
Однако, есть КС-языки, для которых не существует однозначных КС-грамматик. Такие языки и грамматики их порождающие называют существенно неоднозначными.
См. также
- Формальные грамматики
- Иерархия Хомского формальных грамматик
- Замкнутость КС-языков относительно различных операций
- Существенно неоднозначные языки
Источники информации
- Wikipedia — Context-free grammar
- Википедия — Контекстно-свободная грамматика
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)