Срез, согласованный срез — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 9: Строка 9:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Согласованный срез''' $G$ — подмножество $E такое, что <tex>\forall f \in E, \forall g \in G : f \rightarrow g \Rightarrow f \in G</tex>.
+
'''Согласованный срез''' $G$ — подмножество $E$ такое, что <tex>\forall f \in E, \forall g \in G : f \rightarrow g \Rightarrow f \in G</tex>.
 
}}
 
}}
 
Это означает, что не существует сообщения переданного "через срез" в обратную сторону, т.е не бывает такого, что событие отправки сообщения не вошло в согласованный срез, а принятия вошло (см. рисунок <tex>m_1</tex> - несогласованный срез, <tex>m_2</tex> - согласованный срез). Можем говорить о том, что согласованный срез показывает некий глобальный снимок нашей системы.
 
Это означает, что не существует сообщения переданного "через срез" в обратную сторону, т.е не бывает такого, что событие отправки сообщения не вошло в согласованный срез, а принятия вошло (см. рисунок <tex>m_1</tex> - несогласованный срез, <tex>m_2</tex> - согласованный срез). Можем говорить о том, что согласованный срез показывает некий глобальный снимок нашей системы.
Строка 16: Строка 16:
  
 
Эквивалентное определение: не существует $f \in G, e \in E \setminus G$ таких, что $e \to f$.
 
Эквивалентное определение: не существует $f \in G, e \in E \setminus G$ таких, что $e \to f$.
 +
 +
Пусть $G$ и $H$ — согласованные срезы. Будем говорить, что $G \le H$, если H достижимо из G (т.е. $G \subseteq H$ в смысле событий).
 +
 +
Заметим, что если есть два согласованных среза $G_1$ и $G_2$, то срез $G_1 \cap G_2$ тоже согласован и, более того, $(G_1 \cap G_2) \le G_1, G_2$.
 +
Доказательство: рассмотрим, какие сообщения могут пересылаться между различными частями системы:
 +
{|border="1" style="text-align: center"
 +
|откуда\куда
 +
|$G_1 \cap G_2$
 +
|$G_1 \cap \bar G_2$
 +
|$\bar G_1 \cap G_2$
 +
|$\bar G_1 \cap \bar G_2$
 +
|-
 +
|$G_1 \cap G_2$ || + || + || + || +
 +
|-
 +
|$G_1 \cap \bar G_2$ || - || + || - || +
 +
|-
 +
|$\bar G_1 \cap G_2$ || - || - || + || +
 +
|-
 +
|$\bar G_1 \cap \bar G_2$ || - || - || - || +
 +
|-
 +
|}
 +
 +
Заметим, что не существует сообщений, которые бы пересылались из $E \setminus (G_1 \cap G_2)$ в $G_1 \cap G_2$, что и требовалось.

Версия 22:35, 2 июня 2019

Мотивация: если у распределенной системы нет «глобального состояния», то как запомнить её состояние на диске, чтобы можно было продолжить работу после восстановления с диска?

Пусть $E$ — множество событий с полным порядком ($<$) в рамках каждого процесса.

Определение:
Срез $F$ — подмножество $E$ такое, что если $e < f \in F$, то $e \in F$.


Определение:
Согласованный срез $G$ — подмножество $E$ такое, что [math]\forall f \in E, \forall g \in G : f \rightarrow g \Rightarrow f \in G[/math].

Это означает, что не существует сообщения переданного "через срез" в обратную сторону, т.е не бывает такого, что событие отправки сообщения не вошло в согласованный срез, а принятия вошло (см. рисунок [math]m_1[/math] - несогласованный срез, [math]m_2[/math] - согласованный срез). Можем говорить о том, что согласованный срез показывает некий глобальный снимок нашей системы.

Consistent.png

Эквивалентное определение: не существует $f \in G, e \in E \setminus G$ таких, что $e \to f$.

Пусть $G$ и $H$ — согласованные срезы. Будем говорить, что $G \le H$, если H достижимо из G (т.е. $G \subseteq H$ в смысле событий).

Заметим, что если есть два согласованных среза $G_1$ и $G_2$, то срез $G_1 \cap G_2$ тоже согласован и, более того, $(G_1 \cap G_2) \le G_1, G_2$. Доказательство: рассмотрим, какие сообщения могут пересылаться между различными частями системы:

откуда\куда $G_1 \cap G_2$ $G_1 \cap \bar G_2$ $\bar G_1 \cap G_2$ $\bar G_1 \cap \bar G_2$
$G_1 \cap G_2$ + + + +
$G_1 \cap \bar G_2$ - + - +
$\bar G_1 \cap G_2$ - - + +
$\bar G_1 \cap \bar G_2$ - - - +

Заметим, что не существует сообщений, которые бы пересылались из $E \setminus (G_1 \cap G_2)$ в $G_1 \cap G_2$, что и требовалось.