Совпадение множества языков МП-автоматов и контекстно-свободных языков — различия между версиями
Bochkarev (обсуждение | вклад) (→Пример) |
Bochkarev (обсуждение | вклад) (→Эквивалентность языков МП-автоматов и КС-языков) |
||
Строка 72: | Строка 72: | ||
|proof= Из утверждения 1 следует, что <tex> L(G) \subseteq N(P) </tex>, в свою очередь из утверждения 2 следует, что <tex> N(P) \subseteq L(G) </tex>. Отсюда <tex> L(G)=N(P) </tex>. | |proof= Из утверждения 1 следует, что <tex> L(G) \subseteq N(P) </tex>, в свою очередь из утверждения 2 следует, что <tex> N(P) \subseteq L(G) </tex>. Отсюда <tex> L(G)=N(P) </tex>. | ||
}} | }} | ||
+ | === Литература === | ||
+ | * Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений. |
Версия 02:46, 16 января 2011
Далее будут приведены конструкции для построения МП-автомата по заданной КС-грамматике, и наоборот. Также будет приведена теорема об эквивалентности языков.
Содержание
Построение МП-автомата по заданной КС-грамматике
Пусть
— КС-грамматика. Построим МП-автомат , который допускает по пустому магазину. Функция переходов будет определена по следующим правилам:- 1. — продукция — для каждой переменной .
- 2. для каждого терминала .
Пример
Преобразуем грамматику выражений в МП-автомат. Пусть дана грамматика:
Множеством входных символов является
. Эти символы, вместе с переменными , образуют магазинный алфавит. Функция переходов определена следующим образом:- a)
- b)
- c) ; ;... ; если входной символ совпадает с вершиной стека, то вершина удаляется.
Пункты a,b образованы по первому правилу построения функции переходов, пункт c по второму правилу.
Корректность построения
Пусть
, тогда имеет следующее левое порождение: . Покажем индукцией по , что :- База. Очевидно, что
- Переход. Предположим, что . Заметим, что шаг порождения включает замену некоторой переменной ее продукцией . Правило 1 построения МП-автомата позволяет на заменить на вершине стека на цепочку , а правило 2 позволяет затем сравнить любые терминалы на вершине со входными символами. В результате достигается МО .
- Также заметим, что . Таким образом , т.е допускает по пустому стеку.
Утверждение (1): |
Если МП-автомат построен по грамматике , с использованием указанной выше конструкции, то |
Выше доказана корректность построения МП-автомата по любой КС-грамматике. Значит множество языков КС-грамматик является подмножеством языков допускаемых МП-автоматами. |
Построение КС-грамматики по МП-автомату
Наша конструкция эквивалентной грамматики использует переменные вида:
Следует отметить, что удаление может являться результатом множества переходов.
Пусть — МП-автомат. Построим , где состоит из:
- 1 Специальный стартовый символ
- 2 Все символы вида , где и — состояния из , а — магазинный символ из .
Грамматика
имеет следующие продукции:- a) продукции для всех , таким образом
- b) пусть содержит . Тогда для всех списков состояний в грамматике есть продукция .
Пример
Пусть у нас имеется
, функция задана следующим образом:Так как
имеет один магазинный символ и одно состояние, то грамматика строится просто. У нас будет всего две переменные:- a) — стартовый символ.
- b) — единственная тройка, которую можно собрать из наших состояний и магазинный символов.
Также грамматика имеет следующие продукции:
- 1. Единственной продукцией для является . Но если бы у автомата было состояний, то тут бы имелось и продукций.
- 2. Из того факта, что содержит , получаем продукцию . Если бы у автомата было n состояний, то такое правило порождало бы продукций.
- 3. Из получаем продукцию
Для удобства тройку
можно заменить символом , в таком случае грамматика состоит из следующих продукций:В действительности можно заметить, что
и порождают одни и те же цепочки, поэтому их можно обозначить одинаково, итого:Корректность построения
Докажем, что если
, то .- База. Пара должна быть в и есть одиночный символ, или . Из построения следует, что является продукцией, поэтому .
- Переход. Предположим, что последовательность состоит из переходов, и . Первый переход должен иметь вид:
.
Утверждение (2): |
Если КС-грамматика построена по МП-автомату , с использованием указанной выше конструкции, то |
Выше доказана корректность построения КС-грамматики по МП-автомату. Значит языки допускаемые МП-автоматами являются подмножеством языков, заданных КС-грамматикой. |
Эквивалентность языков МП-автоматов и КС-языков
Теорема (Об эквивалентности языков МП-автоматов и КС-языков): |
Множество языков, допускаемых МП-автоматами совпадает с множеством языков, задаваемых с помощью контекстно-свободных грамматик. |
Доказательство: |
Из утверждения 1 следует, что | , в свою очередь из утверждения 2 следует, что . Отсюда .
Литература
- Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений.