Теорема о существовании простого пути в случае существования пути — различия между версиями
Shevchen (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
Строка 14: | Строка 8: | ||
'''Длина пути''' – количество [[Основные определения теории графов|рёбер]], входящих в последовательность, задающую этот путь. | '''Длина пути''' – количество [[Основные определения теории графов|рёбер]], входящих в последовательность, задающую этот путь. | ||
}} | }} | ||
+ | |||
+ | {{Теорема | ||
+ | |statement= | ||
+ | Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует простой путь. | ||
+ | |proof= | ||
=== Доказательство построением === | === Доказательство построением === |
Версия 03:57, 17 января 2011
Определение: |
Простой (вершинно-простой) путь между двумя вершинами графа – путь между ними, в котором каждая из вершин графа встречается не более одного раза. |
Определение: |
Длина пути – количество рёбер, входящих в последовательность, задающую этот путь. |
Теорема: |
Если между двумя вершинами графа существует путь, то между ними существует простой путь. |
Доказательство: |
Доказательство построениемВозьмём любой из существующих путей между нужными нам вершинами: .
1. Для вершинынайдём момент её последнего вхождения в путь – . 2. Удалим отрезок пути от до , включительно. Получившаяся последовательность вершин и рёбер графа останется путём от до , и в нём вершина будет содержаться ровно один раз. Начнём процесс с вершины и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет простым.АльтернативноеВыберем из всех путей между данными вершинами путь наименьшей длины. Предположение: Пусть он не простой.Тогда в нём содержатся две одинаковые вершины , . Удалим из исходного пути отрезок от до , включительно. Конечная последовательность также будет путём от до и станет короче исходной. Получено противоречие с условием: взятый нами путь оказался не кратчайшим. Значит, предположение неверно, выбранный путь – простой. |
Замечания
- Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого пути.
- Теорема может быть сформулирована как для ориентированного, так и для неориентированного графа.