Теорема о существовании простого цикла в случае существования цикла — различия между версиями
(→Замечания) |
|||
Строка 1: | Строка 1: | ||
− | Назовём два пути одинаковыми, если последовательности вершин и рёбер графа, задающие их, совпадают полностью. Иначе будем считать пути различными. | + | {{Определение |
− | + | |definition= | |
− | + | Назовём два пути '''одинаковыми''', если последовательности вершин и рёбер графа, задающие их, совпадают полностью. Иначе будем считать пути '''различными'''. | |
− | + | }} | |
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
Строка 13: | Строка 10: | ||
Очевидно, это условие не распространяется на первую и последнюю вершины цикла. | Очевидно, это условие не распространяется на первую и последнюю вершины цикла. | ||
− | + | {{Теорема | |
+ | |statement= | ||
+ | Если между двумя [[Основные определения теории графов|вершинами неориентированного графа]] существуют два различных рёберно-простых [[Основные определения теории графов|пути]], то в этом графе существует простой цикл. | ||
+ | |proof= | ||
Возьмём два существующих пути между нужными нам вершинами: <tex>V_0E_1V_1E_2V_2 ... E_nV_n</tex>, <tex>v_0e_1v_1e_2v_2 ... e_mv_m</tex>, <tex>V_0 = v_0</tex>, <tex>V_n = v_m</tex>. Удалим из путей одинаковые префиксы и суффиксы, оставив из тех только последние и первые вершины, соответственно. Оставшиеся пути: <tex>V_aE_{a+1} ... E_bV_b</tex>, <tex>v_ae_{a+1} ... e_cv_c</tex>, <tex>V_a = v_a</tex>, <tex>V_b = v_c</tex>, <tex>E_{a+1} \neq e_{a+1}</tex>, <tex>E_b \neq e_c</tex>. | Возьмём два существующих пути между нужными нам вершинами: <tex>V_0E_1V_1E_2V_2 ... E_nV_n</tex>, <tex>v_0e_1v_1e_2v_2 ... e_mv_m</tex>, <tex>V_0 = v_0</tex>, <tex>V_n = v_m</tex>. Удалим из путей одинаковые префиксы и суффиксы, оставив из тех только последние и первые вершины, соответственно. Оставшиеся пути: <tex>V_aE_{a+1} ... E_bV_b</tex>, <tex>v_ae_{a+1} ... e_cv_c</tex>, <tex>V_a = v_a</tex>, <tex>V_b = v_c</tex>, <tex>E_{a+1} \neq e_{a+1}</tex>, <tex>E_b \neq e_c</tex>. | ||
Версия 04:00, 17 января 2011
Определение: |
Назовём два пути одинаковыми, если последовательности вершин и рёбер графа, задающие их, совпадают полностью. Иначе будем считать пути различными. |
Определение: |
Простой (вершинно-простой) цикл в графе – цикл, в котором каждая из вершин графа встречается не более одного раза. |
Очевидно, это условие не распространяется на первую и последнюю вершины цикла.
Теорема: |
Если между двумя вершинами неориентированного графа существуют два различных рёберно-простых пути, то в этом графе существует простой цикл. |
Доказательство: |
Возьмём два существующих пути между нужными нам вершинами: , , , . Удалим из путей одинаковые префиксы и суффиксы, оставив из тех только последние и первые вершины, соответственно. Оставшиеся пути: , , , , , .Рассмотрим конкатенацию первого нового пути и развёрнутого второго нового пути. Она будет циклом, так как начальная и конечная вершины совпадают, изначально пути были рёберно-простыми, а в точке соединения, равно как и в точке замыкания цикла, условие различности двух идущих подряд рёбер выполняется. Мы получили цикл, определим его: , .
1. Для вершиныНачнём процесс с вершины найдём момент её последнего вхождения в цикл – . 2. Удалим отрезок цикла от до , включительно. Получившаяся последовательность вершин и рёбер графа останется циклом, и в нём вершина будет содержаться ровно один раз. и будем повторять его каждый раз для следующей вершины нового цикла, пока не дойдём до последней. По построению, получившийся цикл будет содержать каждую из вершин графа не более одного раза, а значит, будет простым. |
Замечания
- Наличие двух различных рёберно-простых путей между какими-либо вершинами графа равносильно наличию цикла в этом графе.
- Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для вершинно-простых путей (усиление условия).
- Так как вершинно-простой цикл всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого цикла (ослабление результата).
- Утверждение
Если две вершины графа лежат на цикле, то они лежат на простом цикле.
В общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же точку сочленения или один и тот же мост.