Изменения

Перейти к: навигация, поиск

Порождающие модели

2078 байт добавлено, 14:36, 24 февраля 2020
Явный подход
Например, [[Байесовские сети|байесовские сети]] строят распределение из условных распре­делений <math>\mathrm P(X_1, \ldots, X_n) = \prod_{i=1}^n \mathrm P(X_i \mid \operatorname{parents}(X_i)).</math>
Можно даже и вовсе никаких предположений не делать: любое распределение всегда раскладывается как : <tex>p(x) = \displaystyle \prod_{i} p(x_i \mid x_1, {{...}}, x_{i-1})</tex> Так представляется модель в FVBN (fully visible belief net­works)<ref>[https://mitpress.mit.edu/books/graphical-models-machine-learning-and-digital-communication Frey B. Graphical Models for Machine Learning and Digital Communication, Cambridge, MA: MIT Press, 1998.]</ref>, идея которых состоит в том, что с одномерными распределениями нетрудно разобраться - в ранних работах их представляли классическими моделями. А сейчас мы можем их промоделировать последовательно [[Глубокое обучение|глу­бокими сетями]], получится модель, которая сможет последовательно породить <tex>х</tex> компонент за компонентом, каждый раз для порождения <tex>x_i</tex> опираясь на уже порожденные <tex>x_1, {{...}}, x_{i-1})</tex>. Именно эта идея лежит в основе моде­ли для работы со звуком [[WaveNet]]<sup>[на 24.02.20 не создан]</sup>, разработанной Google DeepMind<ref>[https://deepmind.com/blog/article/wavenet-generative-model-raw-audio Blog post by DeepMind about WaveNet]</ref>. Существующие параметрические модели синтезирования речи<ref>[https://en.wikipedia.org/wiki/Speech_synthesis Text-To-Speech (TTS)]</ref> обычно генерируют звук, прогоняя выходной сигнал через специальные обработчики, называемые вокодерами<ref>[https://en.wikipedia.org/wiki/Vocoder Vocoder]</ref>.[[Файл:WaveNet.gif|thumb|upright=1.5|right|Устройство WaveNet]]WaveNet меняет парадигму, генерируя звуковой сигнал по семплам. Это не только приводит к более натуральному звучанию речи, но и позволяет создавать любые звуки, включая музыку.Эта ар­хитектура состоит из нескольких последовательных слоев разреженных сверток и в ней снова встречаются остаточные связи, связи «через уровень» и так далее.Во время обучения входящие последовательности представляют собой звуковые волны от примеров записи голоса. После тренировки можно с помощью сети генерировать синтетические фразы. На каждом шагу семплирования значение вычисляется из вероятностного распределения, посчитанного сетью. Затем это значение возвращается на вход и делается новое предсказание для следующего шага.
<tex>p(x) = \displaystyle \prod_{i} p(x_i \mid x_1, {{...}}, x_{i-1})</tex>(Простая факторизующаяся плотность)
Так представляется модель в FVBN (fully visible belief net­works)<ref>[https://mitpress.mit.edu/books/graphical-models-machine-learning-and-digital-communication Frey B. Graphical Models for Machine Learning and Digital Communication, Cambridge, MA: MIT Press, 1998.]</ref>, идея которых состоит в том, что с одномерными распределениями мы уж как-нибудь разберемся - в ранних работах их представляли классическими моделями. А сейчас мы можем их промоделировать последовательно [[Глубокое обучение|глу­бокими сетями]], получится модель, которая сможет последовательно породить <tex>х</tex> компонент за компонентом, каждый раз для порождения <tex>x_i</tex> опираясь на уже порожденные <tex>x_1, {{...}}, x_{i-1})</tex>.
Если хочется явно выразить совсем сложные распределения в порождающих моделях, их приходится приближать более простыми, которые уже, в свою очередь, могут быть выражены явно. Для этого обычно используются [[Вариационный автокодировщик|вариационные мето­ды]].
76
правок

Навигация