Алгоритмы сэмплирования — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 16: Строка 16:
 
* '''Комбинированние''' (англ. ''сombining over- and under-sampling'') {{---}} последовательное применение субдискретизации и передискретизации.
 
* '''Комбинированние''' (англ. ''сombining over- and under-sampling'') {{---}} последовательное применение субдискретизации и передискретизации.
 
* '''Ансамбль сбалансированных наборов''' (англ. ''ensemble balanced sets'') {{---}} Создания ансамбля сбалансированных выборок путем итеративного применения субдискретизации к набору данных.
 
* '''Ансамбль сбалансированных наборов''' (англ. ''ensemble balanced sets'') {{---}} Создания ансамбля сбалансированных выборок путем итеративного применения субдискретизации к набору данных.
 +
 +
Также все методы можно разделить на две группы: случайные (недетерминированные) и специальные (детерминированные).
  
 
Передискретизации, как правило, применяется чаще, чем субдискретизация. Подбор проб применяется гораздо реже. Переизбыток собранных данных стал проблемой только в эпоху «больших данных», и причины использования субдискретизация в основном практичны и связаны с затратами на ресурсы.
 
Передискретизации, как правило, применяется чаще, чем субдискретизация. Подбор проб применяется гораздо реже. Переизбыток собранных данных стал проблемой только в эпоху «больших данных», и причины использования субдискретизация в основном практичны и связаны с затратами на ресурсы.
Строка 21: Строка 23:
  
 
== Примеры алгоритмов ==
 
== Примеры алгоритмов ==
 +
=== Cубдискретизация ===
 +
=== Передискретизации===
 +
=== Комбинированние ===
 +
=== Ансамбль сбалансированных наборов===
 +
 +
== Реализации ==
 +
 +
Большинство рассмотренных алгоритмов реализованы в
 +
 +
== См. также ==
 +
 +
*[[%%%%%%%%%%%%%%%%%%%%%%%%5]]
 +
*[[%%%%%%%%%%%%%%%%%%%%%%%%%%%%%]]
  
 +
== Примечания ==
 +
<references/>
  
== Постановка задачи сэмплирования ==
+
[[Категория: Машинное обучение]]
 +
[[Категория: Классификация и регрессия]]

Версия 05:52, 16 марта 2020

Сэмплирование (англ. data sampling) — метод корректировки обучающей выборки с целью балансировки распределения классов в исходном наборе данных. Нужно отличать этот метод от сэмплирования в активном обучении для отбора кандидатов и от сэмплирования в статистике[1] для создания подвыборки с сохранением распределения классов.

Когда в обучающем наборе данных доля примеров некоторого класса слишком мала, такие классы называются миноритарными (англ. minority), а другие, сильно представленные, — мажоритарными (англ. majority)). Подобные тенденции хорошо заметны в кредитном скоринге, в медицине, в директ-маркетинге.

Следует отметить то, что значимость ошибочной классификации может быть разной. Неверная классификация примеров миноритарного класса, как правило, обходится в разы дороже, чем ошибочная классификация примеров мажоритарного класса. Например, при классификации людей обследованных в больнице на людей больных раком (миноритарный класс) и здоровых (мажоритарный класс) лучше будет отправить на дополнительное обследование здоровых пациентов, чем пропустить людей с раком.

Неравномерное распределение может быть следующих типов:

  • Недостаточное представление класса в переменной предикторе (независимой переменной);
  • Недостаточное представление класса в критериальной переменной (зависимой).

Многие модели машинного обучения, например, нейронные сети, дают более надежные прогнозы на основе обучения со сбалансированными данными. Однако некоторые аналитические методы, в частности линейная регрессия и логистическая регрессия, не получают дополнительного преимущества.

Стратегии сэмплирования

  • Cубдискретизация (англ. under-sampling) — удаление некоторого количество примеров мажоритарного класса.
  • Передискретизации (англ. over-sampling) — увеличение количество примеров миноритарного класса.
  • Комбинированние (англ. сombining over- and under-sampling) — последовательное применение субдискретизации и передискретизации.
  • Ансамбль сбалансированных наборов (англ. ensemble balanced sets) — Создания ансамбля сбалансированных выборок путем итеративного применения субдискретизации к набору данных.

Также все методы можно разделить на две группы: случайные (недетерминированные) и специальные (детерминированные).

Передискретизации, как правило, применяется чаще, чем субдискретизация. Подбор проб применяется гораздо реже. Переизбыток собранных данных стал проблемой только в эпоху «больших данных», и причины использования субдискретизация в основном практичны и связаны с затратами на ресурсы. Переизбыток уже собранных данных стал проблемой только в эпоху «больших данных», и причины использования недостаточной выборки в основном практичны и связаны с затр%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%атами на ресурсы. В частности, хотя для получения достоверных статистических выводов требуется достаточно большой размер выборки, данные должны быть очищены перед использованием. Очистка обычно включает в себя значительную человеческую составляющую и, как правило, специфична для набора данных и аналитической проблемы, и поэтому требует времени и денег. Например:

Примеры алгоритмов

Cубдискретизация

Передискретизации

Комбинированние

Ансамбль сбалансированных наборов

Реализации

Большинство рассмотренных алгоритмов реализованы в

См. также

Примечания