Оценка качества в задачах классификации и регрессии — различия между версиями
MuratOK (обсуждение | вклад) |
MuratOK (обсуждение | вклад) (→Оценки качества регрессии) |
||
Строка 132: | Строка 132: | ||
Наиболее типичными мерами качества в задачах регрессии являются средняя квадратичная (Mean Squared Error, MSE) и средняя абсолютная (Mean Absolute Error, MAE) ошибки: | Наиболее типичными мерами качества в задачах регрессии являются средняя квадратичная (Mean Squared Error, MSE) и средняя абсолютная (Mean Absolute Error, MAE) ошибки: | ||
− | [[Файл:mse.png]] | + | [[Файл:mse.png|300px]] |
Версия 11:47, 20 марта 2020
В машинном обучении различают оценки качества для задачи классификации и регрессии. Причем оценка задачи классификации часто значительно сложнее, чем оценка регрессии.
Содержание
- 1 Оценки качества классификации
- 2 Оценки качества регрессии
- 3 Методы оценки качества кластеризации
- 4 Внешние меры оценки качества
- 4.1 Обозначения
- 4.2 Индекс Rand
- 4.3 Индекс Adjusted Rand
- 4.4 Индекс Жаккара (англ. Jaccard Index)
- 4.5 Индекс Фоулкса – Мэллова (англ. Fowlkes-Mallows Index)
- 4.6 Hubert Г statistic
- 4.7 Индекс Phi
- 4.8 Minkowski Score
- 4.9 Индекс Гудмэна-Крускала (англ. Goodman-Kruskal Index)
- 4.10 Entropy
- 4.11 Purity
- 4.12 F-мера
- 4.13 Variation of Information
- 5 Внутренние меры оценки качества
- 5.1 Компактность кластеров (англ. Cluster Cohesion)
- 5.2 Отделимость кластеров (англ. Cluster Separation)
- 5.3 Индекс Данна (англ. Dunn Index)
- 5.4 Обобщенный Индекс Данна (gD31, gD41, gD51, gD33, gD43, gD53)
- 5.5 Индекс S_Dbw
- 5.6 Силуэт (англ. Silhouette)
- 5.7 Индекс Calinski–Harabasz
- 5.8 Индекс C
- 5.9 Индекс Дэвиcа-Болдуина (англ. Davies–Bouldin Index)
- 5.10 Score function
- 5.11 Индекс Gamma
- 5.12 Индекс COP
- 5.13 Индекс CS
- 5.14 Индекс Sym
- 5.15 Индексы SymDB, SymD, Sym33
- 5.16 Negentropy increment
- 5.17 Индекс SV
- 5.18 Индекс OS
- 6 Сравнение
- 7 См. также
- 8 Источники информации
- 9 Примечания
Оценки качества классификации
Перед переходом к самим метрикам необходимо ввести важную концепцию для описания этих метрик в терминах ошибок классификации — confusion matrix (матрица ошибок). Допустим, что у нас есть два класса и алгоритм, предсказывающий принадлежность каждого объекта одному из классов. Рассмотрим пример. Пусть банк использует систему классификации заёмщиков на кредитоспособных и некредитоспособных. При этом первым кредит выдаётся, а вторые получат отказ. Таким образом, обнаружение некредитоспособного заёмщика ( ) можно рассматривать как "сигнал тревоги", сообщающий о возможных рисках.
Любой реальный классификатор совершает ошибки. В нашем случае таких ошибок может быть две:
- Кредитоспособный заёмщик распознается моделью как некредитоспособный и ему отказывается в кредите. Данный случай можно трактовать как "ложную тревогу".
- Некредитоспособный заёмщик распознаётся как кредитоспособный и ему ошибочно выдаётся кредит. Данный случай можно рассматривать как "пропуск цели".
Несложно увидеть, что эти ошибки неравноценны по связанным с ними проблемам. В случае "ложной тревоги" потери банка составят только проценты по невыданному кредиту (только упущенная выгода). В случае "пропуска цели" можно потерять всю сумму выданного кредита. Поэтому системе важнее не допустить "пропуск цели", чем "ложную тревогу".
Поскольку с точки зрения логики задачи нам важнее правильно распознать некредитоспособного заёмщика с меткой
, чем ошибиться в распознавании кредитоспособного, будем называть соответствующий исход классификации положительным (заёмщик некредитоспособен), а противоположный - отрицательным (заемщик кредитоспособен ). Тогда возможны следующие исходы классификации:- Некредитоспособный заёмщик классифицирован как некредитоспособный, т.е. положительный класс распознан как положительный. Наблюдения, для которых это имеет место называются истинно-положительными (true positive - TP).
- Кредитоспособный заёмщик классифицирован как кредитоспособный, т.е. отрицательный класс распознан как отрицательный. Наблюдения, которых это имеет место, называются истинно отрицательными (true negative - TN).
- Кредитоспособный заёмщик классифицирован как некредитоспособный, т.е. имела место ошибка, в результате которой отрицательный класс был распознан как положительный. Наблюдения, для которых был получен такой исход классификации, называются ложно-положительными (false positive - FP), а ошибка классификации называется ошибкой I рода.
- Некредитоспособный заёмщик распознан как кредитоспособный, т.е. имела место ошибка, в результате которой положительный класс был распознан как отрицательный. Наблюдения, для которых был получен такой исход классификации, называются ложно-отрицательными (false negative - FN), а ошибка классификации называется ошибкой II рода.
Таким образом, ошибка I рода, или ложно-положительный исход классификации, имеет место, когда отрицательное наблюдение распознано моделью как положительное. Ошибкой II рода, или ложно-отрицательным исходом классификации, называют случай, когда положительное наблюдение распознано как отрицательное. Поясним это с помощью матрицы ошибок классификации:
Здесь
— это ответ алгоритма на объекте, а — истинная метка класса на этом объекте. Таким образом, ошибки классификации бывают двух видов: False Negative (FN) и False Positive (FP). Каждая строка в матрице ошибок представляет фактический класс, а каждый столбец - спрогнозированный класс.Accuracy
Интуитивно понятной, очевидной и почти неиспользуемой метрикой является accuracy — доля правильных ответов алгоритма:
Эта метрика бесполезна в задачах с неравными классами, и это легко показать на примере.
Допустим, мы хотим оценить работу спам-фильтра почты. У нас есть 100 не-спам писем, 90 из которых наш классификатор определил верно (True Negative = 90, False Positive = 10), и 10 спам-писем, 5 из которых классификатор также определил верно (True Positive = 5, False Negative = 5). Тогда accuracy:
Однако если мы просто будем предсказывать все письма как не-спам, то получим более высокую accuracy:
При этом, наша модель совершенно не обладает никакой предсказательной силой, так как изначально мы хотели определять письма со спамом. Преодолеть это нам поможет переход с общей для всех классов метрики к отдельным показателям качества классов.
Precision
Precision (точностью) называется доля правильных ответов модели в пределах класса – это доля объектов действительно принадлежащих данному классу относительно всех объектов которые система отнесла к этому классу.
Именно введение precision не позволяет нам записывать все объекты в один класс, так как в этом случае мы получаем рост уровня False Positive.
Recall
Recall (Полнота системы) – это доля найденных классфикатором объектов принадлежащих классу относительно всех документов этого класса в тестовой выборке.
Recall демонстрирует способность алгоритма обнаруживать данный класс вообще.
Имея матрицу ошибок точность и полнота для каждого класса рассчитывается очень просто. Precision (точность) равняется отношению соответствующего диагонального элемента матрицы и суммы всей строки класса. Recall (полнота) – отношению диагонального элемента матрицы и суммы всего столбца класса. Формально:
Результирующая точность классификатора рассчитывается как арифметическое среднее его точности по всем классам. То же самое с полнотой. Технически этот подход называется macro-averaging.
F-mera
Precision и recall не зависят, в отличие от accuracy, от соотношения классов и потому применимы в условиях несбалансированных выборок. Часто в реальной практике стоит задача найти оптимальный (для заказчика) баланс между этими двумя метриками. Понятно что чем выше точность и полнота, тем лучше. Но в реальной жизни максимальная точность и полнота не достижимы одновременно и приходится искать некий баланс. Поэтому, хотелось бы иметь некую метрику которая объединяла бы в себе информацию о точности и полноте нашего алгоритма. В этом случае нам будет проще принимать решение о том какую реализацию запускать в production (у кого больше тот и круче). Именно такой метрикой является F-мера.
F-мера представляет собой гармоническое среднее между точностью и полнотой. Она стремится к нулю, если точность или полнота стремится к нулю.
Данная формула придает одинаковый вес точности и полноте, поэтому F-мера будет падать одинаково при уменьшении и точности и полноты. Возможно рассчитать F-меру придав различный вес точности и полноте, если вы осознанно отдаете приоритет одной из этих метрик при разработке алгоритма.
где β принимает значения в диапазоне 0<β<1 если вы хотите отдать приоритет точности, а при β>1 приоритет отдается полноте. При β=1 формула сводится к предыдущей и вы получаете сбалансированную F-меру (также ее называют F1). F-мера достигает максимума при максимальной полноте и точности, и близка к нулю, если один из аргументов близок к нулю.
F-мера является хорошим кандидатом на формальную метрику оценки качества классификатора. Она сводит к одному числу две других основополагающих метрики: точность и полноту. Имея в своем распоряжении подобный механизм оценки вам будет гораздо проще принять решение о том являются ли изменения в алгоритме в лучшую сторону или нет.
ROC-кривая
Receiver Operating Characteristics curve (кривая рабочих характеристик). Используется для анализа поведения классификаторов при различных пороговых значениях. Позволяет рассмотреть все пороговые значения для данного классификатора. Показывает долю ложно положительных примеров ( FPR, false positive rate ) в сравнении с долей истинно положительных примеров ( TPR, true positive rate).
Код отрисовки ROC-кривой
sns.set(font_scale=1.5) sns.set_color_codes("muted")
plt.figure(figsize=(10, 8)) fpr, tpr, thresholds = roc_curve(y_test, lr.predict_proba(X_test)[:,1], pos_label=1) lw = 2 plt.plot(fpr, tpr, lw=lw, label='ROC curve ') plt.plot([0, 1], [0, 1]) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC curve') plt.savefig("ROC.png") plt.show()
Precison-recall кривая
Чувствительность к соотношению классов. Рассмотрим задачу выделения математических статей из множества научных статей. Допустим, что всего имеется 1.000.100 статей, из которых лишь 100 относятся к математике. Если нам удастся построить алгоритм a(x), идеально решающий задачу, то его TPR будет равен единице, а FPR — нулю. Рассмотрим теперь плохой алгоритм, дающий положительный ответ на 95 математических и 50.000 нематематических статьях. Такой алгоритм совершенно бесполезен, но при этом имеет TPR = 0.95 и FPR = 0.05, что крайне близко к показателям идеального алгоритма. Таким образом, если положительный класс существенно меньше по размеру, то AUC-ROC может давать неадекватную оценку качества работы алгоритма, поскольку измеряет долю неверно принятых объектов относительно общего числа отрицательных. Так, алгоритм b(x), помещающий 100 релевантных документов на позиции с 50.001-й по 50.101-ю, будет иметь AUC-ROC 0.95.
Precison-recall кривая. Избавиться от указанной проблемы с несбалансированными классами можно, перейдя от ROC-кривой к Precision-Recall кривой. Она определяется аналогично ROC-кривой, только по осям откладываются не FPR и TPR, а полнота (по оси абсцисс) и точность (по оси ординат). Критерием качества семейства алгоритмов выступает площадь под PR-кривой (AUC-PR)
Оценки качества регрессии
Наиболее типичными мерами качества в задачах регрессии являются средняя квадратичная (Mean Squared Error, MSE) и средняя абсолютная (Mean Absolute Error, MAE) ошибки:
Проблема оценки качества в задаче кластеризации трудноразрешима, как минимум, по двум причинам:
- Теорема невозможности Клейнберга — не существует оптимального алгоритма кластеризации.
- Многие алгоритмы кластеризации не способны определить настоящее количество кластеров в данных. Чаще всего количество кластеров подается на вход алгоритма и подбирается несколькими запусками алгоритма.
Методы оценки качества кластеризации
Метод оценки качества кластеризации — инструментарий для количественной оценки результатов кластеризации.
Принято выделять две группы методов оценки качества кластеризации:
- Внешние (англ. Internal) меры основаны на сравнении результата кластеризации с априори известным разделением на классы.
- Внутренние (англ. External) меры отображают качество кластеризации только по информации в данных.
Внешние меры оценки качества
Данные меры используют дополнительные знания о кластеризуемом множестве: распределение по кластерам, количество кластеров и т.д.
Обозначения
Дано множество
из элементов, разделение на классы , и полученное разделение на кластеры , совпадения между и могут быть отражены в таблице сопряженности , где каждое обозначает число объектов, входящих как в , так и в : .Пусть
.Также рассмотрим пары
из элементов кластеризуемого множества . Подсчитаем количество пар, в которых:- Элементы принадлежат одному кластеру и одному классу —
- Элементы принадлежат одному кластеру, но разным классам —
- Элементы принадлежат разным кластерам, но одному классу —
- Элементы принадлежат разным кластерам и разным классам —
Индекс Rand
Индекс Rand оценивает, насколько много из тех пар элементов, которые находились в одном классе, и тех пар элементов, которые находились в разных классах, сохранили это состояние после кластеризации алгоритмом.
Имеет область определения от 0 до 1, где 1 — полное совпадение кластеров с заданными классами, а 0 — отсутствие совпадений.
Индекс Adjusted Rand
где
— значения из таблицы сопряженности.В отличие от обычного индекса Rand, индекс Adjusted Rand может принимать отрицательные значения, если .
Индекс Жаккара (англ. Jaccard Index)
Индекс Жаккара похож на Индекс Rand, только не учитывает пары элементов находящиеся в разные классах и разных кластерах ( ).
Имеет область определения от 0 до 1, где 1 — полное совпадение кластеров с заданными классами, а 0 — отсутствие совпадений.
Индекс Фоулкса – Мэллова (англ. Fowlkes-Mallows Index)
Индекс Фоулкса – Мэллова используется для определения сходства между двумя кластерами.
Более высокое значение индекса означает большее сходство между кластерами. Этот индекс также хорошо работает на зашумленных данных.
Hubert Г statistic
Данная мера отражает среднее расстояние между объектами разных кластеров:
где
, — матрица близости, аМожно заметить, что два объекта влияют на
, только если они находятся в разных кластерах.Чем больше значение меры — тем лучше.
Индекс Phi
Классическая мера корреляции между двумя переменными:
Minkowski Score
Индекс Гудмэна-Крускала (англ. Goodman-Kruskal Index)
Entropy
Энтропия измеряет "чистоту" меток классов:
Стоит отметить, что если все кластера состоят из объектов одного класса, то энтропия равна 0.
Purity
Чистота ставит в соответствие кластеру самый многочисленный в этом кластере класс.
Чистота находится в интервале [0, 1], причём значение = 1 отвечает оптимальной кластеризации.
F-мера
F-мера представляет собой гармоническое среднее между точностью (precision) и полнотой (recall).
Variation of Information
Данная мера измеряет количество информации, потерянной и полученной при переходе из одного кластера в другой.
Внутренние меры оценки качества
Данные меры оценивают качество структуры кластеров опираясь только непосредственно на нее, не используя внешней информации.
Компактность кластеров (англ. Cluster Cohesion)
Идея данного метода в том, что чем ближе друг к другу находятся объекты внутри кластеров, тем лучше разделение.
Таким образом, необходимо минимизировать внутриклассовое расстояние, например, сумму квадратов отклонений:
- , где — количество кластеров.
Отделимость кластеров (англ. Cluster Separation)
В данном случае идея противоположная — чем дальше друг от друга находятся объекты разных кластеров, тем лучше.
Поэтому здесь стоит задача максимизации суммы квадратов отклонений:
- , где — количество кластеров.
Индекс Данна (англ. Dunn Index)
Индекс Данна имеет множество вариаций, оригинальная версия выглядит следующим образом:
- ,
где:
- — межкластерное расстояние (оценка разделения), ,
- — диаметр кластера (оценка сплоченности), .
Обобщенный Индекс Данна (gD31, gD41, gD51, gD33, gD43, gD53)
Все эти вариации являются комбинациями 3 вариантов вычисления оценки разделения
и оценки компактностиОценки разделения:
- ,
- ,
- .
Оценки компактности:
- ,
- .
Обобщенный индекс Данна, как и обычный, должен возрастать вместе с улучшением качества кластеризации.
Индекс S_Dbw
Основан на вычислении Евклидовой нормы
и стандартных отклонений
- ,
- .
Сам индекс определяется формулой:
- .
Здесь
- ,
- ,
- , если и в ином случае.
Должен снижаться с улучшением кластеризации.
Силуэт (англ. Silhouette)
Значение силуэта показывает, насколько объект похож на свой кластер по сравнению с другими кластерами.
Оценка для всей кластерной структуры:
- ,
где:
- — среднее расстояние от до других объектов из кластера (компактность),
- — среднее расстояние от до объектов из другого кластера (отделимость).
Можно заметить, что
- .
Чем ближе данная оценка к 1, тем лучше.
Есть также упрощенная вариация силуэта:
и вычисляются через центры кластеров.Индекс Calinski–Harabasz
Компактность основана на расстоянии от точек кластера до их центроидов, а разделимость - на расстоянии от центроид кластеров до глобального центроида. Должен возрастать.
Индекс C
Индекс C представляет собой нормализованную оценку компактности:
- ,
где:
- ,
- - сумма минимальных (максимальных) расстояний между парами всех объектов во всем датасете.
Индекс Дэвиcа-Болдуина (англ. Davies–Bouldin Index)
Это, возможно, одна из самых используемых мер оценки качества кластеризации.
Она вычисляет компактность как расстояние от объектов кластера до их центроидов, а отделимость - как расстояние между центроидами.
- ,
где:
Существует еще одна вариация данной меры, которая была предложена автором вместе с основной версией:
C-индекс и индекс Дэвиcа-Болдуина должны минимизироваться для роста кластеризации.
Score function
Индекс, основанный на суммировании. Здесь оценка компактности выражается в дистанции от точек кластера до его центроида, а оценка разделимости — в дистанции от центроидов кластеров до глобального центроида.
- ,
где:
- ,
Чем больше данный индекс, тем выше качество.
Индекс Gamma
где:
- — число пар таких, что (1) и принадлежат разным кластерам, и (2) ,
- .
Индекс COP
В данной мере компактность вычисляется как расстояние от точек кластера до его центроиды, а разделимость основана на расстоянии до самого отдаленного соседа.
- .
Индекс CS
Был предложен в области сжатия изображений, но может быть успешно адаптирован для любого другого окружения. Он оценивает компактность по диаметру кластера, а отделимость — как дистанцию между ближайшими элементами двух кластеров.
- .
Чем меньше значение данного индекса, тем выше качество кластеризации.
Индекс Sym
- .
Здесь
— дистанция симметрии для точки из кластера .Чем выше данное значение, тем лучше.
Индексы SymDB, SymD, Sym33
Модифицируют оценку компактности для индексов Дэвиса-Боулдина, Данна и gD33 соответственно.
SymDB вычисляется аналогично DB с изменением вычисления
на:- .
Данная оценка должна уменьшаться для улучшения качества кластеризации.
В SymD переопределена функция
:- .
в Sym33 аналогично SymD переопределена
:- .
Последние две оценки должны расти для улучшения качества кластеризации.
Negentropy increment
В отличие от подавляющего большинства других оценок, не основывается на сравнении компактности и разделимости. Определяется следующим образом:
- .
Здесь
, - определитель ковариационной матрицы кластера , - определитель ковариационной матрицы всего датасета.Данная оценка должна уменьшаться пропорционально росту качества кластеризации.
Индекс SV
Одна из самых новых из рассматриваемых в данном разделе оценок. Измеряет разделимость по дистанции между ближайшими точка кластеров, а компактность — по расстоянию от пограничных точек кластера до его центроида.
- .
Данная оценка должна увеличиваться.
Индекс OS
Отличается от предыдущей оценки усложненным способом вычисления оценки разделимости.
- .
Где
- .
при
, и в ином случае.Функции
и определены следующим образом:- .
- .
Данная оценка, как и предыдущая, должна возрастать.
Сравнение
Не существует лучшего метода оценки качества кластеризации. Однако, в рамках исследования[1] была предпринята попытка сравнить существующие меры на различных данных. Полученные результаты показали, что на искусственных датасетах наилучшим образом себя проявили индексы , и . На реальных датасетах лучше всех показал себя .
В Таблице 1 приведены оценки сложности мер качества кластеризации (
— число объектов в рассматриваемом наборе данных):Из всех рассмотренных мер, меры [2].
, , и наиболее полно соответствуют когнитивному представлению асессоров о качестве кластеризацииСм. также
- Кластеризация
- Оценка качества в задачах классификации и регрессии[на 28.01.19 не создан]
Источники информации
- Wikipedia — Category:Clustering criteria
- Сивоголовко Е. В. Методы оценки качества четкой кластеризации
- Cluster Validation
- Halkidi, M., Batistakis, Y., Vazirgiannis, M., 2001. On clustering validation techniques. Journal of intelligent information systems, 17(2-3), pp.107-145.
- Pal, N.R., Biswas, J., 1997. Cluster validation using graph theoretic concepts. Pattern Recognition, 30(6), pp.847-857.