Участник:Gpevnev — различия между версиями
(Новая страница: «'''Механизм внимания в рекуррентных нейронных сетях''' (англ. ''attention mechanism'', ''attention model'') {{---}}…») |
(нет различий)
|
Версия 13:18, 21 марта 2020
Механизм внимания в рекуррентных нейронных сетях (англ. attention mechanism, attention model) — дополнительный слой используемый в рекуррентных нейронных сетях для "обращения внимания" последующих слоев сети на скрытое состояние нейронной сети в момент времени .
Обобщенное описание
Рекуррентные нейронные сети используются при обработке данных, для которых важна их последовательность. В классическом случае применения РНН как результат используется только последнее скрытое состояние , где - длинна последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояниния, но и из скрытого расстояния для любого .
Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную нейронную сеть на вход которой подаются
, а также вектор в котором содержится некий контекст зависящий от конкретно задачи (пример для задачи машинного перевода использующего Seq2Seq арихитектуру есть ниже).Выходом данного слоя будет являтся последовательность
- оценки на основании которых на скрытое состояние будет "обращено внимание".Далее для нормализации значений
используется . ТогдаДалее считается
(англ. context vector)Резултатом работы слоя внимания является
который содержит в себе информацию обо всех скрытых состоянях пропорционально оценке .Пример использования для архитектуры Seq2Seq
Данный пример рассматривает применение механизма внимания в задаче машинного перевода в применении к архитектуре Seq2Seq.
Seq2Seq состоит из двух РНН - Encoder и Decoder.
Encoder — принимает предложение на языке A и сжимает его в вектор скрытого состояния. Decoder — выдает слово на языке B, принимает последнее скрытое состояние из энкодера и предыдущее предыдущее предсказаное слово.
TODO: картинку про базовый Seq2Seq сюда.