Смежные классы, теорема Лагранжа, нормальные подгруппы, факторгруппы — различия между версиями
Proshev (обсуждение | вклад) |
(→Теорема Лагранжа) |
||
Строка 15: | Строка 15: | ||
В конечных группах порядок любой подгруппы делит порядок группы | В конечных группах порядок любой подгруппы делит порядок группы | ||
|proof= | |proof= | ||
− | Пусть <tex>G</tex> - конечная группа, а <tex>H</tex> - ее подгруппа. Любой элемент <tex>G</tex> входит в некоторый смежный класс по <tex>H</tex> (<tex>a</tex> входит в <tex>aH</tex>). Мощность каждого класса равна <tex>\vert H\vert</tex>, т.к. отображение <tex>x\rightarrow a\cdot x | + | Пусть <tex>G</tex> - конечная группа, а <tex>H</tex> - ее подгруппа. Любой элемент <tex>G</tex> входит в некоторый смежный класс по <tex>H</tex> (<tex>a</tex> входит в <tex>aH</tex>). Мощность каждого класса равна <tex>\vert H\vert</tex>, т.к. отображение <tex>x\rightarrow a\cdot x </tex> биективно. Таким образом, вся G распадается на непересекающиеся смежные классы одинаковой мощности. Отсюда очевидно, что <tex>\vert G\vert</tex> делится на <tex>\vert H\vert</tex>. |
}} | }} | ||
Версия 13:37, 18 апреля 2020
Смежные классы
Левым смежным классом группы
по множеству назовем множество вида Аналогично определяется и правый смежный класс . Для определенности далее рассматриваем только левые смежные классы, все результаты непосредственно переносятся и на правые.Теорема: Левые смежные классы
по подгруппе либо не пересекаются, либо совпадают.Доказательство: Достаточно доказать, что если классы пересекаются, то они совпадают. Рассмотрим два класса
и с общим элементом . Докажем, что . Пусть принадлежит . Известно: . Тогда , поскольку . Значит, . Аналогично .Теорема Лагранжа
Теорема (Лагранж): |
В конечных группах порядок любой подгруппы делит порядок группы |
Доказательство: |
Пусть | - конечная группа, а - ее подгруппа. Любой элемент входит в некоторый смежный класс по ( входит в ). Мощность каждого класса равна , т.к. отображение биективно. Таким образом, вся G распадается на непересекающиеся смежные классы одинаковой мощности. Отсюда очевидно, что делится на .
Следствие:
. Достаточно рассмотреть циклическую подгруппу : ее порядок равен порядку элемента , но .Следствие:(теорема Ферма) Рассматривая в качестве
группу , получаем при :
Нормальные подгруппы
Подгруппа
группы называется нормальной подгруппой, если для любых выполнено . Т.е.:
Факторгруппа
Рассмотрим группу
и ее нормальную подгруппу . Пусть - множество смежных классов по . Определим в групповую операцию по следующему правилу: произведением двух классов является класс, в который входит произведение представителей этих классов. Проверим корректность этого определения. Пусть . Докажем, что . Достаточно показать, что .
Таким образом, фактормножество
образует подгруппу, которая называется факторгруппой по . Нейтральным элементом является , обратным к - .