Представление булевых функций линейными программами — различия между версиями
Cuciev (обсуждение | вклад) м (Expalnation of the definition fixed) |
Cuciev (обсуждение | вклад) (Ref added) |
||
Строка 30: | Строка 30: | ||
|proof= | |proof= | ||
'''(1)'''<br> | '''(1)'''<br> | ||
− | Пусть <tex>S</tex> {{---}} схема со входами <tex>x_1, \dots , x_n</tex> и функциональными элементами <tex>v_1, \dots , v_m</tex>. Построим по ней линейную программу <tex>P_S</tex> со входными переменными <tex>x_1, \dots , x_n</tex> следующим образом. Топологически отсортируем все входные и функциональные вершины <tex>S</tex>: <tex>u_1, \dots , u_{n + m}</tex>. Программа <tex>P_S</tex> будет последовательностью <tex>m</tex> присваиваний.<br> | + | Пусть <tex>S</tex> {{---}} схема со входами <tex>x_1, \dots , x_n</tex> и функциональными элементами <tex>v_1, \dots , v_m</tex>. Построим по ней линейную программу <tex>P_S</tex> со входными переменными <tex>x_1, \dots , x_n</tex> следующим образом. [[Использование обхода в глубину для топологической сортировки | Топологически отсортируем]] все входные и функциональные вершины <tex>S</tex>: <tex>u_1, \dots , u_{n + m}</tex>. Программа <tex>P_S</tex> будет последовательностью <tex>m</tex> присваиваний.<br> |
* Пусть вершина <tex>u_{n + i}</tex> помечена <tex>\neg</tex>, и в нее входит ребро из <tex>u_j</tex>. Тогда в качестве <tex>i</tex>ой команды поместим в <tex>P_S</tex> присваивание <tex>u_{n + i}= \neg u_j</tex>; | * Пусть вершина <tex>u_{n + i}</tex> помечена <tex>\neg</tex>, и в нее входит ребро из <tex>u_j</tex>. Тогда в качестве <tex>i</tex>ой команды поместим в <tex>P_S</tex> присваивание <tex>u_{n + i}= \neg u_j</tex>; | ||
* Пусть вершина <tex>u_{n + i}</tex> помечена <tex>\circ \in \{ \wedge , \vee \}</tex>, и в нее входят ребра из <tex>u_j</tex> и <tex>u_k</tex>. Тогда в качестве <tex>i</tex>ой команды поместим в <tex>P_S</tex> присваивание <tex>u_{n + i} = u_j \circ u_k</tex>. | * Пусть вершина <tex>u_{n + i}</tex> помечена <tex>\circ \in \{ \wedge , \vee \}</tex>, и в нее входят ребра из <tex>u_j</tex> и <tex>u_k</tex>. Тогда в качестве <tex>i</tex>ой команды поместим в <tex>P_S</tex> присваивание <tex>u_{n + i} = u_j \circ u_k</tex>. | ||
Строка 58: | Строка 58: | ||
= Литература = | = Литература = | ||
+ | # Дехтярь М.И. Реализация булевых функций с помощью логических схем // Введение в схемы, автоматы и алгоритмы, 2007. URL: https://www.intuit.ru/studies/courses/1030/205/lecture/5306 | ||
[[Категория: Дискретная математика]] | [[Категория: Дискретная математика]] | ||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Булевы функции ]] | [[Категория: Булевы функции ]] |
Версия 09:00, 4 июня 2020
Содержание
Линейные программы
Определения и основные понятия, связанные с булевыми функциями описаны в статье Определение булевой функции.
Определение: |
Линейная программа — последовательность строк вида | , где — переменные, а — -местная базисная функция.
Пример
Для базиса линейная программа состоит из присваиваний вида:
- ;
- ;
- .
Линейная программа с выделенными переменными порождает для каждого набора значений входных переменных естественный процесс вычисления:
- Переменным присваиваются значения , соответственно, а каждой из остальных переменных присваивается значение ;
- Последовательно выполняются присваивания программы , в результате чего каждая из переменных программы получит итоговое значение .
Определение: |
Программа | со входными переменными вычисляет в выходной переменной функцию , если для любого набора значений входов после завершения работы .
Связь между схемами и линейными программами
Как известно, булевы функции представимы в виде схем из функциональных элементов. В данном пункте мы определим связь между такими схемами и линейными программами.
Теорема: |
|
Доказательство: |
(1)
|
Пример
Воспользуемся только что доказанной теоремой, и построим на основании этой схемы линейную программу.
Результатом топологической сортировки данного графа может стать последовательность вершин: . Тогда программа будет иметь следующий вид:
Утверждение: |
Число команд в линейной программе , т.е. время ее выполнения, совпадает со сложностью схемы . Глубина схемы также имеет смысл с точки зрения времени вычисления. Именно, — это время выполнения на многопроцессорной системе. Действительно, все команды, соответствующие вершинам одинаковой глубины, можно выполнять параллельно на разных процессорах, так как результаты любой из них не используются в качестве аргументов другой. |
См. также
- Определение булевой функции
- Реализация булевой функции схемой из функциональных элементов
- Использование обхода в глубину для топологической сортировки
Литература
- Дехтярь М.И. Реализация булевых функций с помощью логических схем // Введение в схемы, автоматы и алгоритмы, 2007. URL: https://www.intuit.ru/studies/courses/1030/205/lecture/5306