Предел отображения в метрическом пространстве — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(пофиксил всякие нехорошие вещи)
Строка 49: Строка 49:
 
}}
 
}}
  
== Предел сложного отображения == {{TODO| t=привести условие и доказательство теоремы в порядок}}
+
== Предел сложного отображения ==  
 
Если <tex>f</tex> имеет предел, то в ситуации общих МП:
 
Если <tex>f</tex> имеет предел, то в ситуации общих МП:
  
Строка 56: Строка 56:
 
предел сложного отображения
 
предел сложного отображения
 
|statement=
 
|statement=
#: <tex> A \subset X,\ B \subset Y, Z</tex>. <tex>X, Y, Z</tex> {{---}} МП, у каждого своя метрика.
+
Пусть даны 3 МП: <tex> X, Y, Z</tex>, у каждого своя метрика; <tex> A \subset X,\ B \subset Y</tex>.
#: <tex>a</tex> {{---}} предельная точка <tex>A</tex>, <tex>b = \lim\limits_{x \rightarrow a} f(x)</tex>, тогда <tex>b</tex> предельная у B, при этом:
+
: <tex>g: B \rightarrow Z. \qquad d = \lim\limits_{y \rightarrow b} g(y) </tex>
+
Пусть также заданы отображения
: <tex>Z = g(f(x)) </tex>
+
 
: <tex>f: A \Rightarrow B, f(x) \ne b, x \in A</tex>
+
<tex>f: A \rightarrow B, \qquad g: B \rightarrow Z </tex>
: <tex>g \circ f(x) = g(f(x)). \qquad d = \lim\limits_{y \rightarrow b} g(y): </tex>
+
 
 +
<tex> (f(x) \ne b \forall x \in A) </tex>
 +
 
 +
<tex>a</tex> {{---}} предельная точка <tex>A</tex>, <tex>b</tex> {{---}} предельная точка B, при этом:
 +
 
 +
<tex> b = \lim\limits_{x \rightarrow a} f(x) \qquad d = \lim\limits_{y \rightarrow b} g(y) </tex>
 +
 
 +
Пусть <tex>z(x) = g(f(x)) </tex>
 +
 
 +
Тогда утверждается, что <tex> \lim\limits_{x \rightarrow a} z(x) = d </tex>. Если вы дочитали условие до этого места, возьмите с полки пирожок.
 
|proof=
 
|proof=
 
: <tex>\forall \varepsilon > 0 \, \exists \delta_1 > 0 : 0 < \bar \rho (y, b) < \delta_1 \Rightarrow \bar{\bar \rho}(g / y, d) < \varepsilon \\
 
: <tex>\forall \varepsilon > 0 \, \exists \delta_1 > 0 : 0 < \bar \rho (y, b) < \delta_1 \Rightarrow \bar{\bar \rho}(g / y, d) < \varepsilon \\
Строка 124: Строка 133:
 
<tex> \Leftarrow </tex>:
 
<tex> \Leftarrow </tex>:
 
: Пусть <tex> x \notin F </tex>, тогда <tex>x \in X \backslash F = G = \bigcup\limits_{\alpha}{V_{r_\alpha}(x_{\alpha}})</tex>.
 
: Пусть <tex> x \notin F </tex>, тогда <tex>x \in X \backslash F = G = \bigcup\limits_{\alpha}{V_{r_\alpha}(x_{\alpha}})</tex>.
Значит, <tex> x \in V_r(y) </tex> и <tex> \rho(x, y) < r</tex>, <tex> F \bigcap V = \emptyset</tex>.
+
: Значит, <tex> x \in V_r(y) </tex> и <tex> \rho(x, y) < r</tex>, <tex> F \bigcap V = \varnothing</tex>.
Но, так как <tex>\rho(x, F) = 0</tex>, то <tex>\forall \varepsilon > 0\ \exists a \in F: \rho(x, a) < \varepsilon</tex>.  
+
: Но, так как <tex>\rho(x, F) = 0</tex>, то <tex>\forall \varepsilon > 0\ \exists a \in F: \rho(x, a) < \varepsilon</tex>.  
  
По неравенству треугольника, <tex> \rho(y, a) < \rho(y, x) + \rho(x, a) < r + \varepsilon </tex>. При <tex>\varepsilon \rightarrow 0</tex> получаем, что <tex> \rho(y, a) < r </tex>, значит, точка <tex> a </tex> принадлежит открытому шару, значит <tex> F \bigcap V \ne \emptyset</tex>, получили противоречие.
+
: По неравенству треугольника, <tex> \rho(y, a) < \rho(y, x) + \rho(x, a) < r + \varepsilon </tex>. При <tex>\varepsilon \rightarrow 0</tex> получаем, что <tex> \rho(y, a) < r </tex>, значит, точка <tex> a </tex> принадлежит открытому шару, значит <tex> F \bigcap V \ne \varnothing</tex>, получили противоречие.
 
}}
 
}}
  
Строка 136: Строка 145:
 
Любое МП - нормальное.
 
Любое МП - нормальное.
  
Пусть <tex> (X, \rho) </tex> - МП. <tex> F_1 \cap F_2 = \varnothing </tex>, F_1, F_2 - замкнутые <tex> \Rightarrow \exists G_1, G_2: F_j \in G_j , j = 1, 2; G_1 \cap G_2 = \varnothing </tex>
+
Пусть <tex> (X, \rho) </tex> - МП. <tex> F_1 \cap F_2 = \varnothing </tex>, F_1, F_2 - замкнутые <tex> \Rightarrow \exists G_1, G_2: F_1 \subset G_1, F_2 \subset G_2; G_1 \cap G_2 = \varnothing </tex>
 
|proof=
 
|proof=
<tex> f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)} </tex>. Т.к. <tex> F_1 \cap F_2 = \varnothing </tex> и <tex> F_1, F_2 </tex> - замкнуты, то знаменатель не равен 0. Следовательно, <tex> f(x) </tex> корректна и непрерывна в силу непрерывности <tex> \rho </tex>. При этом: <tex> x \in F_1 \Rightarrow f(x) = 0; x \in F_2: f(x) = 1 </tex>. Рассмотрим на R пару интервалов: <tex> (- \infty; \frac 1 3) </tex> и <tex> (\frac 1 2, + \infty) </tex>. Т.к. <tex> f(x) </tex> неперывна, то прообраз открытого множества - открытое множество(Это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее. Хотя это надо бы еще доказать...).
+
<tex> f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)} </tex>. Т.к. <tex> F_1 \cap F_2 = \varnothing </tex> и <tex> F_1, F_2 </tex> - замкнуты, то знаменатель не равен 0. Следовательно, <tex> f(x) </tex> корректна и непрерывна в силу непрерывности <tex> \rho </tex>. При этом: <tex> x \in F_1 \Rightarrow f(x) = 0; x \in F_2: f(x) = 1 </tex>. Рассмотрим на R пару интервалов: <tex> (- \infty; \frac 1 3) </tex> и <tex> (\frac 1 2, + \infty) </tex>. Т.к. <tex> f(x) </tex> неперывна, то прообраз открытого множества - открытое множество(это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее).
 
: <tex> G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) </tex>
 
: <tex> G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) </tex>
 
: <tex> F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing </tex>, ч.т.д.
 
: <tex> F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing </tex>, ч.т.д.
Строка 144: Строка 153:
  
 
{{Теорема
 
{{Теорема
|about=(топологическое определение непрерывности)
+
|about=топологическое определение непрерывности
 
|statement=
 
|statement=
 
Пусть у нас есть <tex> f :(X, \rho) \to (Y, \rho), </tex> тогда
 
Пусть у нас есть <tex> f :(X, \rho) \to (Y, \rho), </tex> тогда
Строка 158: Строка 167:
 
<tex> \delta </tex>  можно найти для любого p значит прообраз открыт     
 
<tex> \delta </tex>  можно найти для любого p значит прообраз открыт     
 
}}
 
}}
 
+
Замечание: так как замкнутые множества являются дополнениями открытых, то отсюда напрямую следует, что прообраз замкнутого множества при непрерывном отображении замкнут.
  
 
== Свойства непрерывных отображений ==
 
== Свойства непрерывных отображений ==
Строка 167: Строка 176:
 
}}
 
}}
 
<tex> [a, b] </tex> на <tex> \mathbb{R} </tex> - классический пример.
 
<tex> [a, b] </tex> на <tex> \mathbb{R} </tex> - классический пример.
Легко видеть что если K - компакт, то оно ограниченное, замкнутое. Ограниченное множество можно пометить в шар. Обратное не верно в общем случае.
+
Легко(???) видеть что если K - компакт, то оно ограниченное, замкнутое. Ограниченное множество можно пометить в шар. Обратное не верно в общем случае.
  
 
2)
 
2)
Строка 178: Строка 187:
 
{{Теорема
 
{{Теорема
 
|about=
 
|about=
свойство связанного множества
+
свойство связанного множества на вещественной оси
 
|statement=
 
|statement=
 
Вместе с парой точек оно содержит отрезок с концами в этих точках.
 
Вместе с парой точек оно содержит отрезок с концами в этих точках.
Строка 189: Строка 198:
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
Пусть K - компакт в <tex> (Y, \rho'); f:  K \rightarrow(neprerivno) (Y, \rho') \Rightarrow  f(K) </tex> - компакт в <tex> (Y, \rho') </tex>( непрерывный образ K есть K).
+
Пусть K - компакт в <tex> (X, \rho); f:  K \rightarrow (Y, \rho'), f </tex> {{---}} непрерывное отображение. Тогда <tex>f(K) </tex> - компакт в <tex> (Y, \rho') </tex> (непрерывный образ компакта {{---}} компакт).
 
|proof=
 
|proof=
 
Рассмотрим <tex> y_n \in f(K) \Rightarrow y_n = f(x_n), x_n \in K </tex>.
 
Рассмотрим <tex> y_n \in f(K) \Rightarrow y_n = f(x_n), x_n \in K </tex>.
<tex> \exists x_{nk} \rightarrow x \in K </tex>. По непрерывности <tex> f(K): y_{nk} = f(x_{nk}) \rightarrow y = f(x) \in f(K) </tex>, ч.т.д.
+
<tex> \exists x_{n_k} \rightarrow x \in K </tex>. По непрерывности <tex> f(K): y_{n_k} = f(x_{n_k}) \rightarrow y = f(x) \in f(K) </tex>, ч.т.д.
 
}}
 
}}
  

Версия 22:05, 21 января 2011

Эта статья находится в разработке!

Подмножества метрического пространства

Если [math] (X, \rho) [/math]метрическое пространство, то [math]\forall\ Y \subset X : (Y, \rho)[/math], очевидно, тоже метрическое пространство.

Окрестность точки в метрическом пространстве

Определение:
Пусть [math]x \in A[/math]. Тогда [math]A[/math]окрестность точки [math]x[/math], если существует открытый шар [math]V: x \in V \subset A [/math]. При этом [math]A \backslash x[/math] называется проколотой окрестностью точки [math]x[/math].


Окрестность точки [math]x[/math] обозначается как [math]O(x)[/math], ее проколотая окрестность — [math]\dot{O}(x)[/math].

Примеры

  • Любой открытый шар [math] V_r(x) [/math] является окрестностью точки [math]x[/math].
  • Числовая прямая — окрестность любого числа.

Предельная точка

Определение:
Рассмотрим [math]A \subset X[/math]. Тогда [math]b \in X[/math]предельная точка для [math]A[/math], если в любой окрестности [math]O(b)[/math] содержится бесконечное число точек, принадлежащих [math]A[/math].


Пример(ы)

  1. [math] X = \mathbb R, A = (0; 1);\ 0 \notin A[/math], [math]0[/math] — предельная точка(как и [math]1[/math], например).

Предел отображения

Определение:
Пусть даны два метрических пространства [math] (X,\rho) [/math] и [math] (Y, \tilde \rho) [/math], [math] A \subset X[/math] и [math]\ a [/math] — предельная точка [math]A[/math]. Пусть [math] f: A \rightarrow Y [/math].
  • Тогда [math] b = \lim\limits_{x \rightarrow a} f(x), b \in Y[/math] , если [math]\forall \varepsilon \gt 0 \, \exists \delta \gt 0: 0 \lt \rho(x, a) \lt \delta \Rightarrow \tilde \rho(f(x), b) \lt \varepsilon [/math].


Так как [math]a[/math] — предельная точка [math]A[/math], то у нас есть гарантии, что [math]0 \lt \rho(x, a) \lt \delta[/math] выполнимо для бесконечного числа точек [math] x \in A[/math]. Отметим: если [math]a \in A[/math], то [math]f(a)[/math] нас не интересует.

Пример(ы)

[math]X = Y = \mathbb R, f: (a - 1; a + 1) \rightarrow \mathbb R, a[/math] — предельная точка. Тогда [math] \lim\limits_{x \rightarrow a} f(x) = b\ \Leftrightarrow\ \forall \varepsilon \gt 0\ \exists \delta \gt 0 : 0 \lt |x - a| \lt \delta \Rightarrow |f(x) - b| \lt \varepsilon [/math].


Определение:
Если при [math]a \in A выполняется \lim\limits_{x \rightarrow a}f(x) = f(a)[/math], тогда говорят, что отображение [math]f[/math] непрерывно в точке [math]a[/math].


Предел сложного отображения

Если [math]f[/math] имеет предел, то в ситуации общих МП:

Теорема (предел сложного отображения):
Пусть даны 3 МП: [math] X, Y, Z[/math], у каждого своя метрика; [math] A \subset X,\ B \subset Y[/math].

Пусть также заданы отображения

[math]f: A \rightarrow B, \qquad g: B \rightarrow Z [/math]

[math] (f(x) \ne b \forall x \in A) [/math]

[math]a[/math] — предельная точка [math]A[/math], [math]b[/math] — предельная точка B, при этом:

[math] b = \lim\limits_{x \rightarrow a} f(x) \qquad d = \lim\limits_{y \rightarrow b} g(y) [/math]

Пусть [math]z(x) = g(f(x)) [/math]

Тогда утверждается, что [math] \lim\limits_{x \rightarrow a} z(x) = d [/math]. Если вы дочитали условие до этого места, возьмите с полки пирожок.
Доказательство:
[math]\triangleright[/math]
[math]\forall \varepsilon \gt 0 \, \exists \delta_1 \gt 0 : 0 \lt \bar \rho (y, b) \lt \delta_1 \Rightarrow \bar{\bar \rho}(g / y, d) \lt \varepsilon \\ \forall \delta_1 \gt 0 \, \exists \delta \gt 0 : 0 \lt \rho (x, a) \lt \delta \Rightarrow \bar \rho (f(x), b) \lt \delta_1 [/math]
[math]f(x) \ne b \Rightarrow 0 \lt \bar \rho (f(x), b) \lt \delta_1 [/math], а тогда [math]y = f(x) [/math]
[math]\forall \varepsilon \gt 0 \, \exists \delta \gt 0: 0 \lt \rho (x, a) \lt \delta \Rightarrow \bar{\bar \rho} (g(y), d) \lt \varepsilon \Rightarrow \lim\limits_{x \rightarrow a} g(f(x)) = d [/math]( у сложной функции предел совпадает с пределом внешней фукнции)
[math]\triangleleft[/math]

Итак, сложная фукнция от двух непрерывных — непрерывна.

Некоторые непрерывные отображения

Теорема:
Пусть задана [math] f: X \rightarrow R_+, f(x) = \rho(x, a) [/math] Проверим, что [math] \forall x_0\ f(x_0) [/math] - непрерывное отображение.
Доказательство:
[math]\triangleright[/math]

Воспользуемся свойством метрического пространства - неравенством треугольника:

[math] \rho(x_2, a) \le \rho(x_1, a) + \rho(x_2, x_1) \ \Leftrightarrow\ \rho(x_2, a) - \rho(x_1, a) \le \rho(x_2, x_1)[/math]

[math] \rho(x_1, a) \le \rho(x_2, a) + \rho(x_1, x_2) \ \Leftrightarrow\ \rho(x_1, a) - \rho(x_2, a) \le \rho(x_1, x_2)[/math]

Отсюда, [math] |\rho(x_2, a) - \rho(x_1, a)| \le \rho(x_2, x_1) [/math].

[math] f(x_2) = \rho(x_2, a), f(x_1) = \rho(x_1, a)[/math], значит, [math] |f(x_2) - f(x_1)| \le \rho(x_2, x_1) [/math]

Полагаем в этом неравенстве [math] x_1 = x, x_2 = x_0 [/math] и обращаемся к определению непрерывного отображения:

[math] \forall \varepsilon \gt 0\ \exists \delta: 0 \lt \rho(x, x_0) \lt \delta \Rightarrow |f(x_0) - f(x)| \lt \varepsilon[/math]

Из неравенства напрямую следует, что условие выполняется при [math] \delta = \varepsilon[/math], поэтому [math] \forall x_0 \Rightarrow f(x_0) [/math] непрерывна.
[math]\triangleleft[/math]


Определение:
[math]\rho(x, A) = \inf\limits_{a \in A} \rho(x, a) [/math] - расстояние от x до A.


Теорема:
[math] \forall x_0\ f(x_0) = \rho(x_0, A) [/math] - непрерывна.
Доказательство:
[math]\triangleright[/math]

[math] f(x_1) \le \rho(x_1, а) \le \rho(x_2, A) + \rho(x_2, x_1) [/math]

По определению нижней грани, [math]\forall \varepsilon \gt 0\ \exists a^* \in A: \rho(x, a^*) \lt \rho(x, A) + \varepsilon[/math], значит, [math]f(x_1) \le \rho(x_2, A) + \varepsilon + \rho(x_2, x_1) [/math].

Делая предельный переход при [math] \varepsilon \rightarrow 0[/math], получаем неравенство [math] f(x_1) \le \rho(x_2, A) + \rho(x_2, x_1) [/math].

Аналогично, [math] f(x_2) \le \rho(x_1, A) + \rho(x_1, x_2) [/math].

Дальнейшие рассуждения аналогичны предыдущему доказательству непрерывности.
[math]\triangleleft[/math]
Теорема:
Пусть F - замкнуто. Тогда [math]x \in F \Leftrightarrow \rho(x, F) = 0 [/math]
Доказательство:
[math]\triangleright[/math]

[math] \Rightarrow [/math]:

[math] \rho(x, F) = \inf\limits_{a \in F} \rho(x, a) [/math].
Но [math] x \in F[/math], а [math] \rho(x, x) = 0 [/math], по определению [math] \rho \gt = 0 [/math], значит, [math] \rho(x, F) = 0, [/math]

[math] \Leftarrow [/math]:

Пусть [math] x \notin F [/math], тогда [math]x \in X \backslash F = G = \bigcup\limits_{\alpha}{V_{r_\alpha}(x_{\alpha}})[/math].
Значит, [math] x \in V_r(y) [/math] и [math] \rho(x, y) \lt r[/math], [math] F \bigcap V = \varnothing[/math].
Но, так как [math]\rho(x, F) = 0[/math], то [math]\forall \varepsilon \gt 0\ \exists a \in F: \rho(x, a) \lt \varepsilon[/math].
По неравенству треугольника, [math] \rho(y, a) \lt \rho(y, x) + \rho(x, a) \lt r + \varepsilon [/math]. При [math]\varepsilon \rightarrow 0[/math] получаем, что [math] \rho(y, a) \lt r [/math], значит, точка [math] a [/math] принадлежит открытому шару, значит [math] F \bigcap V \ne \varnothing[/math], получили противоречие.
[math]\triangleleft[/math]
Теорема (о нормальности МП):
Любое МП - нормальное. Пусть [math] (X, \rho) [/math] - МП. [math] F_1 \cap F_2 = \varnothing [/math], F_1, F_2 - замкнутые [math] \Rightarrow \exists G_1, G_2: F_1 \subset G_1, F_2 \subset G_2; G_1 \cap G_2 = \varnothing [/math]
Доказательство:
[math]\triangleright[/math]

[math] f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)} [/math]. Т.к. [math] F_1 \cap F_2 = \varnothing [/math] и [math] F_1, F_2 [/math] - замкнуты, то знаменатель не равен 0. Следовательно, [math] f(x) [/math] корректна и непрерывна в силу непрерывности [math] \rho [/math]. При этом: [math] x \in F_1 \Rightarrow f(x) = 0; x \in F_2: f(x) = 1 [/math]. Рассмотрим на R пару интервалов: [math] (- \infty; \frac 1 3) [/math] и [math] (\frac 1 2, + \infty) [/math]. Т.к. [math] f(x) [/math] неперывна, то прообраз открытого множества - открытое множество(это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее).

[math] G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) [/math]
[math] F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing [/math], ч.т.д.
[math]\triangleleft[/math]
Теорема (топологическое определение непрерывности):
Пусть у нас есть [math] f :(X, \rho) \to (Y, \rho), [/math] тогда [math] f [/math] - непрерывная [math] \iff [/math] прообраз любого открытого множества открыт.
Доказательство:
[math]\triangleright[/math]

1.Докажем в одну сторону Рассмотрим открытое множество G в У. Рассмотрим произвольную точку f(p) из G. Так как G открытое то [math] \exists \varepsilon \gt 0 : V_\varepsilon(f(p)) \in G [/math] По непрерывности [math] \exists \delta : x \in V_\delta(p) \Rightarrow f(x) \in V_\varepsilon(f(p)) [/math] Подберем такое [math] \delta [/math] Из выше сказанного следует что [math] V_\delta(p) \in f^-1(p) [/math].

[math] \delta [/math] можно найти для любого p значит прообраз открыт
[math]\triangleleft[/math]

Замечание: так как замкнутые множества являются дополнениями открытых, то отсюда напрямую следует, что прообраз замкнутого множества при непрерывном отображении замкнут.

Свойства непрерывных отображений

1)

Определение:
Пусть [math] (X, \rho) [/math] - МП. [math] K \in X [/math] является компактом в X, если из любой последовательности точек принадлежащих K можно выделить сходящуюся подпоследовательность [math] x_n: \lim x_n \in K [/math].

[math] [a, b] [/math] на [math] \mathbb{R} [/math] - классический пример. Легко(???) видеть что если K - компакт, то оно ограниченное, замкнутое. Ограниченное множество можно пометить в шар. Обратное не верно в общем случае.

2)

Определение:
[math] A \in X [/math] является связным, если нельзя подобрать пару имеющих хотя бы одну общую точку с [math]A[/math] множеств [math] G_1, G_2 \in \tau: G_1 \cap G_2 = \varnothing, A = (A \cap G_1) \cup (A \cap G_2) [/math]

Например, любой промежуток на R - связное множество.

Теорема (свойство связанного множества на вещественной оси):
Вместе с парой точек оно содержит отрезок с концами в этих точках. Пусть A - связное в R. Пусть [math] a, b \in A [/math]. Если [math] \forall c \in (a, b): c \in A [/math], свойство верно.
Доказательство:
[math]\triangleright[/math]
[math] G_1 \cup G_2 = R \backslash \{c\}, c \in A. A = (A \cap G_1) \cup (A \cap G_2) \Rightarrow A [/math] не связно, получили противоречие, [math] c \in A [/math], ч.т.д.
[math]\triangleleft[/math]

Эти классы определены, т.к:

Теорема:
Пусть K - компакт в [math] (X, \rho); f: K \rightarrow (Y, \rho'), f [/math] — непрерывное отображение. Тогда [math]f(K) [/math] - компакт в [math] (Y, \rho') [/math] (непрерывный образ компакта — компакт).
Доказательство:
[math]\triangleright[/math]

Рассмотрим [math] y_n \in f(K) \Rightarrow y_n = f(x_n), x_n \in K [/math].

[math] \exists x_{n_k} \rightarrow x \in K [/math]. По непрерывности [math] f(K): y_{n_k} = f(x_{n_k}) \rightarrow y = f(x) \in f(K) [/math], ч.т.д.
[math]\triangleleft[/math]

Определение: равномерно - непрерывные отображения

TODO: сделать их, черт возьми!