Предел отображения в метрическом пространстве — различия между версиями
Komarov (обсуждение | вклад) |
Sementry (обсуждение | вклад) (пофиксил всякие нехорошие вещи) |
||
Строка 49: | Строка 49: | ||
}} | }} | ||
− | == Предел сложного отображения == | + | == Предел сложного отображения == |
Если <tex>f</tex> имеет предел, то в ситуации общих МП: | Если <tex>f</tex> имеет предел, то в ситуации общих МП: | ||
Строка 56: | Строка 56: | ||
предел сложного отображения | предел сложного отображения | ||
|statement= | |statement= | ||
− | + | Пусть даны 3 МП: <tex> X, Y, Z</tex>, у каждого своя метрика; <tex> A \subset X,\ B \subset Y</tex>. | |
− | + | ||
− | + | Пусть также заданы отображения | |
− | + | ||
− | + | <tex>f: A \rightarrow B, \qquad g: B \rightarrow Z </tex> | |
− | + | ||
+ | <tex> (f(x) \ne b \forall x \in A) </tex> | ||
+ | |||
+ | <tex>a</tex> {{---}} предельная точка <tex>A</tex>, <tex>b</tex> {{---}} предельная точка B, при этом: | ||
+ | |||
+ | <tex> b = \lim\limits_{x \rightarrow a} f(x) \qquad d = \lim\limits_{y \rightarrow b} g(y) </tex> | ||
+ | |||
+ | Пусть <tex>z(x) = g(f(x)) </tex> | ||
+ | |||
+ | Тогда утверждается, что <tex> \lim\limits_{x \rightarrow a} z(x) = d </tex>. Если вы дочитали условие до этого места, возьмите с полки пирожок. | ||
|proof= | |proof= | ||
: <tex>\forall \varepsilon > 0 \, \exists \delta_1 > 0 : 0 < \bar \rho (y, b) < \delta_1 \Rightarrow \bar{\bar \rho}(g / y, d) < \varepsilon \\ | : <tex>\forall \varepsilon > 0 \, \exists \delta_1 > 0 : 0 < \bar \rho (y, b) < \delta_1 \Rightarrow \bar{\bar \rho}(g / y, d) < \varepsilon \\ | ||
Строка 124: | Строка 133: | ||
<tex> \Leftarrow </tex>: | <tex> \Leftarrow </tex>: | ||
: Пусть <tex> x \notin F </tex>, тогда <tex>x \in X \backslash F = G = \bigcup\limits_{\alpha}{V_{r_\alpha}(x_{\alpha}})</tex>. | : Пусть <tex> x \notin F </tex>, тогда <tex>x \in X \backslash F = G = \bigcup\limits_{\alpha}{V_{r_\alpha}(x_{\alpha}})</tex>. | ||
− | Значит, <tex> x \in V_r(y) </tex> и <tex> \rho(x, y) < r</tex>, <tex> F \bigcap V = \ | + | : Значит, <tex> x \in V_r(y) </tex> и <tex> \rho(x, y) < r</tex>, <tex> F \bigcap V = \varnothing</tex>. |
− | Но, так как <tex>\rho(x, F) = 0</tex>, то <tex>\forall \varepsilon > 0\ \exists a \in F: \rho(x, a) < \varepsilon</tex>. | + | : Но, так как <tex>\rho(x, F) = 0</tex>, то <tex>\forall \varepsilon > 0\ \exists a \in F: \rho(x, a) < \varepsilon</tex>. |
− | По неравенству треугольника, <tex> \rho(y, a) < \rho(y, x) + \rho(x, a) < r + \varepsilon </tex>. При <tex>\varepsilon \rightarrow 0</tex> получаем, что <tex> \rho(y, a) < r </tex>, значит, точка <tex> a </tex> принадлежит открытому шару, значит <tex> F \bigcap V \ne \ | + | : По неравенству треугольника, <tex> \rho(y, a) < \rho(y, x) + \rho(x, a) < r + \varepsilon </tex>. При <tex>\varepsilon \rightarrow 0</tex> получаем, что <tex> \rho(y, a) < r </tex>, значит, точка <tex> a </tex> принадлежит открытому шару, значит <tex> F \bigcap V \ne \varnothing</tex>, получили противоречие. |
}} | }} | ||
Строка 136: | Строка 145: | ||
Любое МП - нормальное. | Любое МП - нормальное. | ||
− | Пусть <tex> (X, \rho) </tex> - МП. <tex> F_1 \cap F_2 = \varnothing </tex>, F_1, F_2 - замкнутые <tex> \Rightarrow \exists G_1, G_2: | + | Пусть <tex> (X, \rho) </tex> - МП. <tex> F_1 \cap F_2 = \varnothing </tex>, F_1, F_2 - замкнутые <tex> \Rightarrow \exists G_1, G_2: F_1 \subset G_1, F_2 \subset G_2; G_1 \cap G_2 = \varnothing </tex> |
|proof= | |proof= | ||
− | <tex> f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)} </tex>. Т.к. <tex> F_1 \cap F_2 = \varnothing </tex> и <tex> F_1, F_2 </tex> - замкнуты, то знаменатель не равен 0. Следовательно, <tex> f(x) </tex> корректна и непрерывна в силу непрерывности <tex> \rho </tex>. При этом: <tex> x \in F_1 \Rightarrow f(x) = 0; x \in F_2: f(x) = 1 </tex>. Рассмотрим на R пару интервалов: <tex> (- \infty; \frac 1 3) </tex> и <tex> (\frac 1 2, + \infty) </tex>. Т.к. <tex> f(x) </tex> неперывна, то прообраз открытого множества - открытое множество( | + | <tex> f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)} </tex>. Т.к. <tex> F_1 \cap F_2 = \varnothing </tex> и <tex> F_1, F_2 </tex> - замкнуты, то знаменатель не равен 0. Следовательно, <tex> f(x) </tex> корректна и непрерывна в силу непрерывности <tex> \rho </tex>. При этом: <tex> x \in F_1 \Rightarrow f(x) = 0; x \in F_2: f(x) = 1 </tex>. Рассмотрим на R пару интервалов: <tex> (- \infty; \frac 1 3) </tex> и <tex> (\frac 1 2, + \infty) </tex>. Т.к. <tex> f(x) </tex> неперывна, то прообраз открытого множества - открытое множество(это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее). |
: <tex> G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) </tex> | : <tex> G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) </tex> | ||
: <tex> F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing </tex>, ч.т.д. | : <tex> F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing </tex>, ч.т.д. | ||
Строка 144: | Строка 153: | ||
{{Теорема | {{Теорема | ||
− | |about= | + | |about=топологическое определение непрерывности |
|statement= | |statement= | ||
Пусть у нас есть <tex> f :(X, \rho) \to (Y, \rho), </tex> тогда | Пусть у нас есть <tex> f :(X, \rho) \to (Y, \rho), </tex> тогда | ||
Строка 158: | Строка 167: | ||
<tex> \delta </tex> можно найти для любого p значит прообраз открыт | <tex> \delta </tex> можно найти для любого p значит прообраз открыт | ||
}} | }} | ||
− | + | Замечание: так как замкнутые множества являются дополнениями открытых, то отсюда напрямую следует, что прообраз замкнутого множества при непрерывном отображении замкнут. | |
== Свойства непрерывных отображений == | == Свойства непрерывных отображений == | ||
Строка 167: | Строка 176: | ||
}} | }} | ||
<tex> [a, b] </tex> на <tex> \mathbb{R} </tex> - классический пример. | <tex> [a, b] </tex> на <tex> \mathbb{R} </tex> - классический пример. | ||
− | Легко видеть что если K - компакт, то оно ограниченное, замкнутое. Ограниченное множество можно пометить в шар. Обратное не верно в общем случае. | + | Легко(???) видеть что если K - компакт, то оно ограниченное, замкнутое. Ограниченное множество можно пометить в шар. Обратное не верно в общем случае. |
2) | 2) | ||
Строка 178: | Строка 187: | ||
{{Теорема | {{Теорема | ||
|about= | |about= | ||
− | свойство связанного множества | + | свойство связанного множества на вещественной оси |
|statement= | |statement= | ||
Вместе с парой точек оно содержит отрезок с концами в этих точках. | Вместе с парой точек оно содержит отрезок с концами в этих точках. | ||
Строка 189: | Строка 198: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть K - компакт в <tex> ( | + | Пусть K - компакт в <tex> (X, \rho); f: K \rightarrow (Y, \rho'), f </tex> {{---}} непрерывное отображение. Тогда <tex>f(K) </tex> - компакт в <tex> (Y, \rho') </tex> (непрерывный образ компакта {{---}} компакт). |
|proof= | |proof= | ||
Рассмотрим <tex> y_n \in f(K) \Rightarrow y_n = f(x_n), x_n \in K </tex>. | Рассмотрим <tex> y_n \in f(K) \Rightarrow y_n = f(x_n), x_n \in K </tex>. | ||
− | <tex> \exists x_{ | + | <tex> \exists x_{n_k} \rightarrow x \in K </tex>. По непрерывности <tex> f(K): y_{n_k} = f(x_{n_k}) \rightarrow y = f(x) \in f(K) </tex>, ч.т.д. |
}} | }} | ||
Версия 22:05, 21 января 2011
Содержание
Подмножества метрического пространства
Если метрическое пространство, то , очевидно, тоже метрическое пространство.
—Окрестность точки в метрическом пространстве
Определение: |
Пусть | . Тогда — окрестность точки , если существует открытый шар . При этом называется проколотой окрестностью точки .
Окрестность точки обозначается как , ее проколотая окрестность — .
Примеры
- Любой открытый шар является окрестностью точки .
- Числовая прямая — окрестность любого числа.
Предельная точка
Определение: |
Рассмотрим | . Тогда — предельная точка для , если в любой окрестности содержится бесконечное число точек, принадлежащих .
Пример(ы)
- , — предельная точка(как и , например).
Предел отображения
Определение: |
Пусть даны два метрических пространства
| и , и — предельная точка . Пусть .
Так как — предельная точка , то у нас есть гарантии, что выполнимо для бесконечного числа точек . Отметим: если , то нас не интересует.
Пример(ы)
— предельная точка. Тогда .
Определение: |
Если при | , тогда говорят, что отображение непрерывно в точке .
Предел сложного отображения
Если
имеет предел, то в ситуации общих МП:Теорема (предел сложного отображения): |
Пусть даны 3 МП: , у каждого своя метрика; .
Пусть также заданы отображения
— предельная точка , — предельная точка B, при этом:
Пусть Тогда утверждается, что . Если вы дочитали условие до этого места, возьмите с полки пирожок. |
Доказательство: |
|
Итак, сложная фукнция от двух непрерывных — непрерывна.
Некоторые непрерывные отображения
Теорема: |
Пусть задана
Проверим, что - непрерывное отображение. |
Доказательство: |
Воспользуемся свойством метрического пространства - неравенством треугольника:
Отсюда, ., значит, Полагаем в этом неравенстве и обращаемся к определению непрерывного отображения:Из неравенства напрямую следует, что условие выполняется при , поэтому непрерывна. |
Определение: |
- расстояние от x до A. |
Теорема: |
- непрерывна. |
Доказательство: |
По определению нижней грани, , значит, .Делая предельный переход при , получаем неравенство .Аналогично, Дальнейшие рассуждения аналогичны предыдущему доказательству непрерывности. . |
Теорема: |
Пусть F - замкнуто. Тогда |
Доказательство: |
:
:
|
Теорема (о нормальности МП): |
Любое МП - нормальное.
Пусть - МП. , F_1, F_2 - замкнутые |
Доказательство: |
. Т.к. и - замкнуты, то знаменатель не равен 0. Следовательно, корректна и непрерывна в силу непрерывности . При этом: . Рассмотрим на R пару интервалов: и . Т.к. неперывна, то прообраз открытого множества - открытое множество(это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее).
|
Теорема (топологическое определение непрерывности): |
Пусть у нас есть тогда
- непрерывная прообраз любого открытого множества открыт. |
Доказательство: |
1.Докажем в одну сторону Рассмотрим открытое множество G в У. Рассмотрим произвольную точку f(p) из G. Так как G открытое то По непрерывности Подберем такое Из выше сказанного следует что . можно найти для любого p значит прообраз открыт |
Замечание: так как замкнутые множества являются дополнениями открытых, то отсюда напрямую следует, что прообраз замкнутого множества при непрерывном отображении замкнут.
Свойства непрерывных отображений
1)
Определение: |
Пусть | - МП. является компактом в X, если из любой последовательности точек принадлежащих K можно выделить сходящуюся подпоследовательность .
на - классический пример. Легко(???) видеть что если K - компакт, то оно ограниченное, замкнутое. Ограниченное множество можно пометить в шар. Обратное не верно в общем случае.
2)
Определение: |
является связным, если нельзя подобрать пару имеющих хотя бы одну общую точку с множеств |
Например, любой промежуток на R - связное множество.
Теорема (свойство связанного множества на вещественной оси): |
Вместе с парой точек оно содержит отрезок с концами в этих точках.
Пусть A - связное в R. Пусть . Если , свойство верно. |
Доказательство: |
не связно, получили противоречие, , ч.т.д. |
Эти классы определены, т.к:
Теорема: |
Пусть K - компакт в — непрерывное отображение. Тогда - компакт в (непрерывный образ компакта — компакт). |
Доказательство: |
Рассмотрим . . По непрерывности , ч.т.д. |
Определение: равномерно - непрерывные отображения
TODO: сделать их, черт возьми!