Обсуждение:Метод производящих функций — различия между версиями
Zevgeniy (обсуждение | вклад) м (progress...) |
Zevgeniy (обсуждение | вклад) м (progress...) |
||
Строка 72: | Строка 72: | ||
<tex dpi="350">c_n=\sum_{k=0}^{n}a_k b_{n-k}</tex> | <tex dpi="350">c_n=\sum_{k=0}^{n}a_k b_{n-k}</tex> | ||
− | <tex dpi="350">C(t)=A(t) \cdot B(t)</tex> | + | {{Утверждение |
− | + | |statement=<tex dpi="350">C(t)=A(t) \cdot B(t)</tex> | |
− | + | |proof=Верно, потому что коэффициенты производящей функции описываются описываются равенством выше) | |
− | + | }} | |
===Последовательности комбинаторных классов=== | ===Последовательности комбинаторных классов=== | ||
Строка 87: | Строка 87: | ||
+ | {{Утверждение | ||
+ | |statement=<tex dpi="350">Seq_k(A)(t)=A(t)^k</tex> | ||
+ | |proof=Докажем по индукции: | ||
+ | '''База <tex dpi="350">k=1</tex>'''. | ||
+ | :Для <tex dpi="350">k=1</tex> верно, потому что <tex dpi="350">Seq_1(A)=A \Rightarrow Seq_1(A)(t)=A(t)=A(t)^1</tex>. | ||
+ | |||
+ | '''Переход'''. | ||
+ | :Пусть для <tex dpi="350">k=n</tex> верно <tex dpi="350">Seq_n(A)(t)=A(t)^n</tex>. Докажем для | ||
+ | <tex dpi="350">k=n+1</tex> <tex dpi="350">Seq_{n+1}(A)(t)=A(t)^{n+1}</tex>. Рассмотрим <tex dpi="350">Seq_{n+1}(A)</tex> как <tex dpi="350">Pair(Seq_n(A), A)</tex>. Тогда <tex dpi="350">Seq_{n+1}(A)(t)=A(t)^n*A(t)=A(t)^{n+1}</tex>. | ||
+ | }} | ||
---- | ---- |
Версия 22:15, 23 июня 2020
Содержание
Метод производящих функций
Непомеченные комбинаторные объекты
Каждый комбинаторный объект состоит из атомов.
У атомов определен вес
.
Определение: |
Считающей последовательностью называется последовательность | , где — количество объектов веса .
Производящую функцию класса обозначим .
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса .
Считающая последовательность: .
Производящая функция последовательности: .
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса . .
Считающая последовательность: .
Производящая функция последовательности: .
Определение: |
Комбинаторным классом | называется множество комбинаторных объектов, обладающих каким-то свойством.
Объединение комбинаторных классов
Определение: |
Объединением комбинаторных классов | и называется комбинаторный класс .
При объединении комбинаторных классов одинаковые объекты разных классов считаются разными. Это делается так, чтобы не рассматривать внутреннюю структуру классов, а работать только со считающими последовательностями и производящими функциями.
Пары комбинаторных классов (декартово произведение комбинаторных классов)
Определение: |
Парой комбинаторных классов | и называется комбинаторный класс .
Утверждение: |
Верно, потому что коэффициенты производящей функции описываются описываются равенством выше) |
Последовательности комбинаторных классов
Определение: |
Последовательностью | объектов из называется .
Утверждение: |
Докажем по индукции: База .
Переход.
|
Такие большие группы часто анализируют с помощью производящих функций. Один из популярных методов — метод символов [1]. Он использует внутреннюю структуру объектов для получения производящих функций. В случае непомеченных объектов, как и в анализе в нашей статье, считается, что нет объектов нулевого веса. Иногда для удобства их добавляют, чтобы показать наличие одного пустого множества.
Утверждение: |
. |
, так как есть единственный способ составить пустую последовательность. Докажем по индукции. База .
Переход.
|
При непомеченных объектах рассмотренные классы имеют следующие производящие функции:
функция Эйлера. | , где —
---|
Однако порой некоторые комбинаторные классы удобнее обозначать как помеченные. Например, — помеченные графы. С помеченными объектами используется экспоненциальная производящая функция [2]. В данном случае для некоторых рассмотренных классов используются следующие производящие функции:
. |
---|
Ограниченные конструкции
Иногда в анализе необходимо ввести ограничение на количество компонентов. Такой случай обозначается нижним коэффициентом (например,
— компонентов).Непосредственной формулой для производящих функций является диагональ [3] , определяемая как . Тогда имеет место соотношение .
декартова произведенияДиагональная конструкция позволяет получить доступ к классу всех неупорядоченных пар из различных элементов из
, то есть к . Прямое выражение выполняется следующим способом: неупорядоченная пара связана с двумя упорядоченными парами и , кроме тех случаев, когда , то есть когда пара лежит на диагонали декартова произведения. Другими словами, .Это, в свою очередь, означает что
. Таким образом можно выразить . Аналогично для , и :Аналогичные рассуждения можно провести и для больших теорема Пойа.
, однако расчеты быстро становятся сложными. Классический способ исправления таких вопросов —Однако в методе символов предлагается более глобальный подход, основанный на многомерных производящих функциях и использующий ряд Бюрмана-Лагранжа [4]. В общем случае, используя метод символов, производящие функции ограниченных конструкций можно подсчитать следующим способом:
функция Эйлера. | , где —
---|