Формула Зыкова — различия между версиями
Vsklamm (обсуждение | вклад) |
|||
| Строка 2: | Строка 2: | ||
|id=def_1 | |id=def_1 | ||
|definition= | |definition= | ||
| − | '''Независимым множеством''' (англ. ''Independent set'') в графе <tex>G = (V, E)</tex> называется непустое множество <tex>S \subset V: \forall v,u \in S | + | '''Независимым множеством''' (англ. ''Independent set'') в графе <tex>G = (V, E)</tex> называется непустое множество <tex>S \subset V: \forall v,u \in S</tex> ребро <tex>(v,u) \notin E</tex>. |
}} | }} | ||
{{Теорема | {{Теорема | ||
Версия 00:49, 6 октября 2020
| Определение: |
| Независимым множеством (англ. Independent set) в графе называется непустое множество ребро . |
| Теорема (Зыкова): |
Для хроматического многочлена графа верна формула:
, где — число способов разбить вершины на независимых множеств, , а — нисходящая факториальная степень. |
| Доказательство: |
|
В правильной раскраске вершины, имеющие одинаковый цвет, не смежны, поэтому все такие вершины могут быть объединены в одно независимое множество. Перебрав все возможные разбиения на независимые множества с последующей их всевозможной покраской доступными цветами получим искомое число способов раскраски графа в цветов. Теперь проделаем это более формально. Подсчитаем число раскрасок графа , в которых используется точно цветов, для этого его нужно разбить на независимых множеств и вершины в каждом таком классе покрасить в один из цветов, отличный от всех других множеств, так как мы не делаем никаких предположений о связи между классами. Рассмотрим случай, где . Чтобы получить такую раскраску зафиксируем какое-нибудь разбиение множества вершин графа на независимых множеств, затем берем один из классов в разбиении и раскрашиваем его в один из цветов, потом берем следующий класс и окрашиваем его вершины в одинаковый цвет любой из оставшихся красок и т.д. Всего таких способов разбиения существует . Следовательно, перебрав все возможные разбиения на независимых множеств, получим, что число интересующих нас раскрасок графа равно . Заметим теперь, что при число -раскрасок, в которых используется точно цветов, равно и при этом тоже равно . Суммирование по от до даст полное число способов. |
Примечание: в такой формулировке задача о поиске хроматического многочлена сводится к отысканию количества способов разбить граф на независимые множества, что в свою очередь также не разрешимо за полиномиальное время.
См. также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: Графы, матроиды, алгоритмы. — Ижевск: НИЦ «РХД», 2001. С. 140-141. — ISBN 5-93972-076-5