85
правок
Изменения
м
→Канальный модуль внимания
=== Канальный модуль внимания ===
[[Файл:ChannelAttentionModule.png|600px|thumb|right|Канальный модуль внимания]]
'''Канальный модуль внимания''' (англ. ''channel attention module'') реализуется за счет исследования внутриканальных взаимосвязей во входных данных, то есть пытается извлечь информацию из яркости каналов одного пикселя, фокусируясь на том "какая" информация находится в данных. Для более эффективной реализации используется сжатие входных данных по измерениям <math>H</math> и <math>W</math> с помощью [[:Сверточные_нейронные_сети#Пулинговый слой|пулингов]] <math>MaxPool</math> и <math>AvgPool</math>, которые применяются независимо к входному тензору. В результате которого получаются два вектора <math>F^c_{max}</math> и <math>F^c_{avg}</math> из <math>\mathbb{R}^{C}</math>. После чего к этим двум векторам независимо применяется одна и та же [[:Нейронные_сети,_перцептрон#Многослойные нейронные сети|полносвязная нейронная сеть]] с одним скрытым слоем малой размерности (при этом ее входные и выходные вектора принадлежат <math>\mathbb{R}^{C}</math>). После этого полученные из нейросети вектора поэлементно складываются, к результату поэлементно применяется сигмоидная функция активации и добавляются недостающие единичные размерности. Полученный тензор из <math>\mathbb{R}^{C \times 1 \times 1}</math> как раз и является результатом применения <math>A_1(F)</math>, поэлементное произведение которого со входом <math>F</math> дает тензор <math>F_1</math>.
=== Пространственный модуль внимания ===