69
правок
Изменения
→Функция \sigma(n)
Функция <tex>\sigma : \mathbb{N} \to \mathbb{N} </tex> определяется как сумма делителей натурального числа <tex>n</tex>:
<center><tex>\displaystyle\sigma(n) = \sum_{d | n}d </tex></center>
Если <math>m</math> и <math>n</math> взаимно просты, то каждый делитель произведения <math>mn</math> может быть единственным образом представлен в виде произведения делителей <math>m</math> и делителей <math>n</math>, и обратно, каждое такое произведение является делителем <math>mn</math>. Отсюда следует, что функция <tex>\sigma(n)</tex> мультипликативна:
Для простого числа <math>p</math> легко посчитать <tex>\displaystyle\sigma(p) = p + 1</tex>. При этом легко обобщается для некоторой степени <math>p</math>:
В силу мультипликативности функции:
<center><tex> \displaystyle \sigma (n) = \prod_{i = 1}^{r}{\frac{p_{i}^{s_i+1}-1} {p_{i}-1}} </tex></center>
==== Функция <tex>\tau(n)</tex> ====