Изменения

Перейти к: навигация, поиск

Практики реализации нейронных сетей

6324 байта добавлено, 18:39, 3 января 2021
Функция Leaky ReLU
# Невозможность использования метода обратного распространения ошибки. Так как в основе этого метода обучения лежит [[Стохастический градиентный спуск | градиентный спуск]], а для того чтобы его найти, нужно взять производную, которая для данной функции активации {{---}} константа и не зависит от входных значений. То есть при обновлении весов нельзя сказать улучшается ли эмпирический риск на текущем шаге или нет.
# Рассмотрим нейронную сеть с несколькими слоями с данной функцией активации. Так как для каждого слоя выходное значение линейно, то они образуют линейную комбинацию, результатом которой является линейная функция. То есть финальная функция активации на последнем слое зависит только от входных значений на первом слое. А это значит, что любое количество слоев может быть заменено всего одним слоем, и, следовательно, нет смысла создавать многослойную сеть.
 
Главное отличие линейной функции от остальных в том, что ее область определения не ограничена: <tex>(-\infty; +\infty)</tex>. Следовательно, ее нужно использовать, когда выходное значение нейрона должно <tex>\in \mathbb R</tex>, а не ограниченному интервалу.
[[Файл:SigmoidFunction.jpg|200px|thumb|right|Рис 5. Сигмоидная функция]]
Несмотря на множество сильных сторон сигмоидной функции, у нее есть значительный недостаток. Производная такой функции крайне мала во всех точках, кроме сравнительно небольшого промежутка. Это сильно усложняет процесс улучшения весов с помощью градиентного спуска. Более того, эта проблема усугубляется в случае, если модель содержит много слоев. Данная проблема называется проблемой исчезающего градиента.<ref>[https://en.wikipedia.org/wiki/Vanishing_gradient_problem Vanishing gradient problem, Wikipedia]</ref>
 
Что касается использования сигмоидной функции, то ее преимущество над другими {{---}} в нормализации выходного значения. Иногда, это бывает крайне необходимо. К примеру, когда итоговое значение слоя должно представлять вероятность случайной величины. Кроме того, эту функцию удобно применять при решении задачи классификации, благодаря свойству "прижимания" к асимптотам.
[[Файл:TanhFunction.jpg|200px|thumb|right|Рис 6. Функция гиперболического тангенса]]
===Функция гиперболического тангенса===
Функция гиперболического тангенса (англ. ''hyperbolic tangent'') имеет вид: <tex>tanh(z) = \dfrac2{1+e^{-2z}} - 1</tex>. Эта функция является скорректированной сигмоидной функцей <tex>tanh(z) = 2 \cdot sigma(2z) - 1</tex>, то есть она сохраняет те же преимущества и недостатки, но уже для диапазона значений <tex>(-1; 1)</tex>. Основное отличие тангенциальной функции от  Обычно, <tex>tanh</tex> является предпочтительнее сигмоиды состоит в томслучаях, когда нет необходимости в нормализации. Это происходит из-за того, что область определения данной функции активации центрирована относительно нуля, что снимает ограничение при подсчете градиента для перемещения в определенном направлении. Кроме того, производная гиперболического тангенса значительно выше вблизи нуля, что дает давая большую амплитуду градиентному спуску, а следовательно и более быструю сходимость.
[[Файл:ReLuFunction.jpg|200px|thumb|right|Рис 7. Функция ReLU]]
# Очень быстро и просто считается производная. Для отрицательных значений {{---}} 0, для положительных {{---}} 1.
# Разреженность активации. В сетях с очень большим количеством нейронов использование сигмоидной функции или гиперболического тангенса в качестве активационный функции влечет активацию почти всех нейронов, что может сказаться на производительности обучения модели. Если же использовать ReLU, то количество включаемых нейронов станет меньше, в силу характеристик функции, и сама сеть станет легче.
 
У данной функции есть один недостаток, называющийся проблемой умирающего ReLU<ref>[https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Potential_problems Dying ReLU problem, Wikipedia]</ref>. Так как часть производной функции равна нулю, то и градиент для нее будет нулевым, а то это значит, что веса не будут изменяться во время спуска и нейронная сеть перестанет обучаться.
 
Функцию активации ReLU следует использовать, если нет особых требований для выходного значения нейрона, вроде неограниченной области определения. Но если после обучения модели результаты получились не оптимальные, то стоит перейти к другим функциям, которые могут дать лучший результат.
 
[[Файл:LReLuFunction.jpg|200px|thumb|right|Рис 8. Функция Leaky ReLU]]
===Функция Leaky ReLU===
Одной из проблем стандартного ReLU является затухающий, а именно нулевой, градиент при отрицательных значениях. При использовании обычного ReLU некоторые нейроны умирают, а отследить умирание нейронов не просто. Чтобы решить эту проблему иногда используется подход ReLU с «утечкой» (leak) {{---}} график функции активации на отрицательных значениях образует не горизонтальную прямую, а наклонную, с маленьким угловым коэффициентом (порядка 0,01). То есть она может быть записана как <tex>\begin{equation}
f(x) =
\begin{cases}
0.01x, & \text{if}\ x < 0 \\
x, & \text{otherwise} \\
\end{cases}
\end{equation}</tex>. Такое небольшое отрицательное значение помогает добиться ненулевого градиента при отрицательных значениях.
Однако, функция Leaky ReLU имеет некоторые недостатки:
# Сложнее считать производную, по сравнению со стандартным подходом (так как значения уже не равны нулю), что замедляет работу каждой эпохи.
# Угловой коэффициент прямой также является гиперпараметром, который надо настраивать.
# На практике, результат не всегда сильно улучшается относительно ReLU.
Стоит отметить, что помимо проблемы умирающих нейронов, у ReLU есть и другая {{---}} проблема [[Затухающий градиент | затухающего градиента]]<sup>[на 03.01.20 не создан]</sup>. При слишком большом количестве слоев градиент будет принимать очень маленькое значение, постепенно уменьшаясь до нуля. Из-за этого нейронная сеть работает нестабильно и неправильно. Leaky ReLU (LReLU) решает первую проблему, но в по-настоящему глубоких сетях проблема затухания градиента все еще встречается и при использовании этого подхода.
 
На практике LReLU используется не так часто. Практический результат использования LReLU вместо ReLU отличается не слишком сильно. Однако в случае использования Leaky требуется дополнительно настраивать гиперпараметр (уровень наклона при отрицательных значениях), что требует определенных усилий. Еще одной проблемой является то, что результат LReLU не всегда лучше чем при использовании обычного ReLU, поэтому чаще всего такой подход используют как альтернатива. Довольно часто на практике используется PReLU (Parametric ReLU), который позволяет добиться более значительных улучшений по сравнению с ReLU и LReLU. Также, в случае параметрической модификации ReLU, угол наклона не является гиперпараметром и настраивается нейросетью.
==См. также==
101
правка

Навигация