Отношение вершинной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Отмена правки 7648 участника Igor buzhinsky (обсуждение))
(Вершинная двусвязность)
Строка 19: Строка 19:
 
<br>
 
<br>
 
'''Транзитивность:'''
 
'''Транзитивность:'''
(Пока не написано. Вы можете помочь статье, написав доказательство.)
+
Набросок доказательства (будет улучшаться):
 +
Пусть имеем ребра <tex>ef</tex> вершинно двусвязно с <tex>cd</tex>, <tex>cd</tex> вершинно двусвязно с <tex>ab</tex>. Ребра <tex>ef</tex> и <tex>cd</tex> лежат на вершинно простом цикле <tex>C</tex>. Будем считать, что существуют непересекающиеся пути <tex>P : a \leadsto c</tex>, <tex>Q : b \leadsto d</tex> (ситуация, когда они идут наоборот, разбирается аналогично). Пусть <tex>x</tex> - первая вершина на <tex>P</tex>, лежащая также на <tex>C</tex>, <tex>y</tex> - первая вершина на <tex>Q</tex>, лежащая на <tex>C</tex>. Проделав пути от <tex>a</tex> до <tex>x</tex> и от <tex>b</tex> до <tex>y</tex>, далее пойдем по циклу <tex>C</tex> в нужные (различные) стороны, чтобы достичь <tex>e</tex> и <tex>f</tex>. (Лучше нарисовать картинку.)
 
}}
 
}}
 
<br>
 
<br>

Версия 05:16, 25 января 2011

Эта статья находится в разработке!


Вершинная двусвязность

Определение:
Два ребра графа называются вершинно двусвязными, если они лежат на некотором вершинно простом цикле.


Теорема:
Отношение вершинной двусвязности является отношением эквивалентности на ребрах.
Доказательство:
[math]\triangleright[/math]

Рефлексивность: В данном случае имеем 2 пустых пути, которые, очевидно, не пересекаются.
Симметричность: Следует из симметричности определения.
Транзитивность: Набросок доказательства (будет улучшаться):

Пусть имеем ребра [math]ef[/math] вершинно двусвязно с [math]cd[/math], [math]cd[/math] вершинно двусвязно с [math]ab[/math]. Ребра [math]ef[/math] и [math]cd[/math] лежат на вершинно простом цикле [math]C[/math]. Будем считать, что существуют непересекающиеся пути [math]P : a \leadsto c[/math], [math]Q : b \leadsto d[/math] (ситуация, когда они идут наоборот, разбирается аналогично). Пусть [math]x[/math] - первая вершина на [math]P[/math], лежащая также на [math]C[/math], [math]y[/math] - первая вершина на [math]Q[/math], лежащая на [math]C[/math]. Проделав пути от [math]a[/math] до [math]x[/math] и от [math]b[/math] до [math]y[/math], далее пойдем по циклу [math]C[/math] в нужные (различные) стороны, чтобы достичь [math]e[/math] и [math]f[/math]. (Лучше нарисовать картинку.)
[math]\triangleleft[/math]


Замечание. Рассмотрим следующее определение: вершины [math]u[/math] и [math]v[/math] называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным.

Блоки

Определение:
Блоками, или компонентами вершинной двусвязности графа, называют его подграфы, множества ребер которых - классы эквивалентности вершинной двусвязности, а множества вершин - множества всевозможных концов ребер из соответствующих классов.


Точки сочленения

Определение:
Точка сочленения графа [math]G[/math] - вершина, принадлежащая как минимум двум блокам [math]G[/math].


Определение:
Точка сочленения графа [math]G[/math] - вершина, при удалении которой в [math]G[/math] увеличивается число компонент связности.


См. также