25
правок
Изменения
wrap figure numbers into <tex>
===Ковариантный сдвиг===
[[Файл:covariate-shift1.png|600px|thumb|Рисунок <tex>1</tex>. Верхние две строки роз показывают первое подмножество данных, а нижние две строки показывают другое подмножество. Два подмножества имеют разные пропорции изображения роз. На графиках показано распределение двух классов в пространстве объектов с использованием красных и зеленых точек. Синяя линия показывает границу между двумя классами. Иллюстрация из [https://www.learnopencv.com/batch-normalization-in-deep-networks/ статьи].]]
Пакетная нормализация уменьшает величину, на которую смещаются значения узлов в скрытых слоях (т.н. '''[[Ковариация случайных величин|ковариантный]] сдвиг''' (англ. covariance shift)).
Когда пакеты содержат изображения разных классов, распределенные в одинаковой пропорции на всем множестве, то ковариантный сдвиг незначителен.
Однако, когда пакеты выбираются только из одного или двух подмножеств (в данном случае, красные розы и розы различных цветов), то ковариантный сдвиг возрастает.
Это довольно сильно замедляет процесс обучения модели. На Рисунке <tex>1 </tex> изображена разница в пропорциях.
Простой способ решить проблему ковариантного сдвига для входного слоя {{---}} это случайным образом перемешать данные перед созданием пакетов.
==Обучение нейронных сетей с пакетной нормализацией==
[[Файл:BNcircuit.png|700px|thumb|Рисунок <tex>2</tex>. [[Настройка_глубокой_сети#Граф вычислений|Граф вычислений]] слоя пакетной нормализации алгоритмом обратного распространения ошибки. Слева-направо черными стрелками показана работа алгоритма в прямом направлении. А справа-налево красными стрелками {{---}} в обратном направлении, где вычисляется градиент функции потерь. Здесь <tex>N=m</tex> и <tex>D=d</tex>. Иллюстрация из [https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html статьи].]]
Для обучения нейронных сетей необходимо вычислять [[wikipedia:ru:Градиент|градиент]] [[wikipedia:en:Loss_function|функции потерь]] <tex>l</tex>. В случае использования метода пакетной нормализации градиент вычисляется следующим образом:
<tex>\displaystyle \frac{\partial l}{\partial \beta} = \sum_{i=1}^{m}\frac{\partial l}{\partial y_{i}}</tex> <tex> (6)</tex>
На Рисунке <tex>2 </tex> изображен [[Настройка_глубокой_сети#Граф вычислений|граф вычислений]] слоя пакетной нормализации алгоритмом обратного распространения ошибки.
В прямом направлении, как и описано в алгоритме метода, из входа <tex>x</tex> вычисляется среднее значение по каждой размерности признакового пространства. Затем полученный вектор средних значение вычитается из каждого элемента обучающей выборки. Далее вычисляется дисперсия, и с помощью нее вычисляется знаменатель для нормализации. Затем полученное значение инвертируется и умножается на разницу входа <tex>x</tex> и средних значений. В конце применяются параметры <tex>\gamma</tex> и <tex>\beta</tex>.
==Индивидуальная нормализация==
[[file:types-of-normalization.png|300px|thumb|Рисунок <tex>3</tex>. Типы нормализации. Ось N
— по объектам в пакете, ось C — по картам признаков (channels), оставшаяся ось —
по пространственным измерениям объектов, например, ширине и высоте картинки.
каждому отдельному объекту, а не по всему пакету. Для примера, усреднение
происходит по пикселям картины, но не по всем картинам в пакете, как видно на
Рисунке <tex>3</tex>.
==Условная пакетная нормализация==
===В применении к переносу стиля===
[[file:style-transfer-example.png|300px|thumb|Рисунок <tex>4</tex>. Перенесения стиля с картины Клода Моне "Рыбацкие лодки" (слева) на изображение человека (справа) <ref name="A Learned Representation for Artistic Style"/>.]]
Популярной задачей является отрисовка данного изображения в стиле какой-то заданной картины, как на Рисунке <tex>4</tex>. Одно из популярных и достаточно быстрых решений этой задачи использует простые нейронные сети [[Нейронные сети, перцептрон#Сети прямого распространения | прямого распространения]]. Это решение имеет недостаток: каждая сеть может переносить лишь один стиль. Если мы хотим научиться переносить <tex>N</tex> стилей, то надо обучать <tex>N</tex> различных сетей. Однако лишь небольшое количество параметров этих сетей отвечает за индивидуальные особенности стиля. Хотелось бы уметь переиспользовать остальные параметры.
====Добавление условности====
==Пример==
[[File:bn_exp_1.png|300px|thumb|Рисунок <tex>5</tex>. Точность распознавания в зависимости от итерации обучения. Оранжевая кривая изображает результаты для модели с использованием пакетной нормализации, синяя кривая {{---}} без. Иллюстрация из [https://github.com/udacity/deep-learning/blob/master/batch-norm/Batch_Normalization_Lesson.ipynb статьи].]][[File:bn_exp_2.png|300px|thumb|Рисунок <tex>6</tex>. Точность распознавания в зависимости от итерации обучения c использованием сигмоиды в качетсве функции активации. Иллюстрация из [https://github.com/udacity/deep-learning/blob/master/batch-norm/Batch_Normalization_Lesson.ipynb статьи].]]
Приведем пример демонстрирующий работу пакетной нормализации.
Веса инициализированы значениями с малой дисперсией.
На Рисунке <tex>5 </tex> изображены два графика, показывающие разницу между моделями.
Как видно, обе модели достигли высокой точности, но модель с использованием пакетной нормализации достигла точности более <tex>90\%</tex> быстрее, почти сразу, и достигла максимума, примерно, уже на <tex>10000</tex> итераций. Однако, модель без пакетной нормализации достигла скорости обучения примерно <tex>510</tex> пакетов в секунду, а модель с использованием пакетной нормализации {{---}} <tex>270</tex>.
Однако, как можно видеть, пакетная нормализация позволяет выполнить меньшее количество итераций и, в итоге, сойтись за меньшее время.
На Рисунке <tex>6 </tex> изображен график, сравнивающий точно такие же модели, но с использованием сигмоиды в качестве функции активации.
Такая конфигурация моделей требует большего времени, чтобы начать обучение.
В итоге, модель обучается, но на это потребовалось более <tex>45000</tex> итераций, чтобы получить точность более <tex>80\%</tex>.