Арифметическое кодирование — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Источник)
Строка 4: Строка 4:
  
 
== Характеристики ==
 
== Характеристики ==
Обеспечивает почти оптимальную степень сжатия с точки зрения энтропийной оценки кодирования Шеннона. На каждый символ требуется почти <math>H</math> бит, где <math>H</math> — информационная энтропия источника.
+
Обеспечивает почти оптимальную степень сжатия с точки зрения энтропийной оценки кодирования Шеннона. На каждый символ требуется почти <tex>H</tex> бит, где <tex>H</tex> — информационная энтропия источника.
  
 
В отличие от [[алгоритм Хаффмана|алгоритма Хаффмана]], метод арифметического кодирования показывает высокую эффективность для дробных неравномерных интервалов распределения вероятностей кодируемых символов. Однако в случае равновероятного распределения символов, например для строки бит ''010101...0101'' длины ''s''  метод арифметического кодирования приближается к префиксному коду Хаффмана и даже может занимать на один бит больше.
 
В отличие от [[алгоритм Хаффмана|алгоритма Хаффмана]], метод арифметического кодирования показывает высокую эффективность для дробных неравномерных интервалов распределения вероятностей кодируемых символов. Однако в случае равновероятного распределения символов, например для строки бит ''010101...0101'' длины ''s''  метод арифметического кодирования приближается к префиксному коду Хаффмана и даже может занимать на один бит больше.
Строка 17: Строка 17:
  
 
== Источник ==
 
== Источник ==
Википедия(Арифметическое кодирование)
+
[http://ru.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BA%D0%BE%D0%B4%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5 Арифметическое кодирование]

Версия 06:19, 9 февраля 2011

Один из алгоритмов энтропийного сжатия.

В отличие от алгоритма Хаффмана, не имеет жесткого постоянного соответствия входных символов - группам бит выходного потока. Это дает алгоритму большую гибкость в представлении дробных частот встречаемости символов.

Характеристики

Обеспечивает почти оптимальную степень сжатия с точки зрения энтропийной оценки кодирования Шеннона. На каждый символ требуется почти [math]H[/math] бит, где [math]H[/math] — информационная энтропия источника.

В отличие от алгоритма Хаффмана, метод арифметического кодирования показывает высокую эффективность для дробных неравномерных интервалов распределения вероятностей кодируемых символов. Однако в случае равновероятного распределения символов, например для строки бит 010101...0101 длины s метод арифметического кодирования приближается к префиксному коду Хаффмана и даже может занимать на один бит больше.

Принцип действия

Пусть у нас есть некий алфавит, а также данные о частотности использования символов (опционально). Тогда рассмотрим на координатной прямой отрезок от 0 до 1.

Назовём этот отрезок рабочим. Расположим на нём точки таким образом, что длины образованных отрезков будут равны частоте использования символа и каждый такой отрезок будет соответствовать одному символу.

Теперь возьмём символ из потока и найдём для него отрезок, среди только что сформированных, теперь отрезок для этого символа стал рабочим. Разобьём его таким же образом, как разбили отрезок от 0 до 1. Выполним эту операцию для некоторого числа последовательных символов. Затем выберем любое число из рабочего отрезка. Биты этого числа вместе с длиной его битовой записи и есть результат арифметического кодирования использованных символов потока.


Источник

Арифметическое кодирование