Задача трансляции изображений — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Генератор)
м (Pix2Pix)
Строка 47: Строка 47:
 
[[File:Training_CGAN_pix2pix.png|400px|right|thumb|Пример процесса обучения генератора и дискриминатора для Pix2Pix.]]
 
[[File:Training_CGAN_pix2pix.png|400px|right|thumb|Пример процесса обучения генератора и дискриминатора для Pix2Pix.]]
  
Pix2Pix реализует архитектуру условных порождающих состязательных сетей (англ. CGAN), где для генератора взята U-Net<ref>[https://sci-hub.do/10.1007/978-3-319-24574-4_28 U-Net: Convolutional Networks for Biomedical Image Segmentation]</ref>-основанная архитектура, а для дискриминатора используется сверточный классификатор PatchGAN<ref>[https://sci-hub.do/10.1007/978-3-319-46487-9_43 Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks]</ref>, который штрафует структуру только в масштабе участков изображения.
+
Pix2Pix реализует архитектуру условных порождающих состязательных сетей (англ. CGAN), где для генератора взята U-Net<ref name="unet">[https://sci-hub.do/10.1007/978-3-319-24574-4_28 U-Net: Convolutional Networks for Biomedical Image Segmentation]</ref>-основанная архитектура, а для дискриминатора используется сверточный классификатор PatchGAN<ref name="patch">[https://sci-hub.do/10.1007/978-3-319-46487-9_43 Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks]</ref>, который штрафует структуру только в масштабе участков изображения.
  
 
Генератор CGAN'a работает следующим образом: на вход подается one-hot вектор класса x и вектор шума z, в результате прохода через условный генератор выдается сгенерированное изображение этого класса, <tex>G: \{x,z\} \to y</tex>. <br>
 
Генератор CGAN'a работает следующим образом: на вход подается one-hot вектор класса x и вектор шума z, в результате прохода через условный генератор выдается сгенерированное изображение этого класса, <tex>G: \{x,z\} \to y</tex>. <br>
Строка 60: Строка 60:
 
Для дискриминатора данной сети используется сверточный дискриминатор PatchGAN.
 
Для дискриминатора данной сети используется сверточный дискриминатор PatchGAN.
  
'''PatchGAN дискриминатор''' {{---}} это тип дискриминатора для генеративных состязательных сетей, который штрафует структуру на уровне локальных фрагментов (патчей).<br>
+
'''PatchGAN дискриминатор'''<ref name="patch">[https://sci-hub.do/10.1007/978-3-319-46487-9_43 Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks]</ref> {{---}} это тип дискриминатора для генеративных состязательных сетей, который штрафует структуру на уровне локальных фрагментов (патчей).<br>
 
Дискриминатор PatchGAN пытается определить, является ли каждый фрагмент размера <tex>N\times N</tex> изображения настоящим или поддельным. Этот дискриминатор сверточно запускается по изображению, усредняя все ответы, чтобы посчитать окончательный результат <tex>D</tex>.<br>
 
Дискриминатор PatchGAN пытается определить, является ли каждый фрагмент размера <tex>N\times N</tex> изображения настоящим или поддельным. Этот дискриминатор сверточно запускается по изображению, усредняя все ответы, чтобы посчитать окончательный результат <tex>D</tex>.<br>
 
Проще говоря, для каждого фрагмента определяется матрица классификаций, где все значения находятся в промежутке <tex>[0,1]</tex>, где <tex>0</tex> {{---}} подделка. Проходясь сверткой, в итоге получаем конечную матрицу классификаций. Таким образом, для поддельного изображения от генератора PatchGan должен попытаться вывести матрицу нулей. <br>
 
Проще говоря, для каждого фрагмента определяется матрица классификаций, где все значения находятся в промежутке <tex>[0,1]</tex>, где <tex>0</tex> {{---}} подделка. Проходясь сверткой, в итоге получаем конечную матрицу классификаций. Таким образом, для поддельного изображения от генератора PatchGan должен попытаться вывести матрицу нулей. <br>
Строка 71: Строка 71:
  
 
Для генератора Pix2Pix используется UNet-генератор.<br>
 
Для генератора Pix2Pix используется UNet-генератор.<br>
'''UNet-генератор''' {{---}} это модель encoder-decoder с добавлением пропускаемых соединений между зеркальными слоями в стеках кодировщика и декодера.
+
'''UNet-генератор'''<ref name="unet">[https://sci-hub.do/10.1007/978-3-319-24574-4_28 U-Net: Convolutional Networks for Biomedical Image Segmentation]</ref> {{---}} это модель encoder-decoder с добавлением пропускаемых соединений между зеркальными слоями в стеках кодировщика и декодера.
  
 
Как работает генератор:
 
Как работает генератор:

Версия 21:34, 9 января 2021

Эта статья находится в разработке!


Определение:
Задача трансляции изображения (англ. Image-to-image translation) — это область задач компьютерного зрения, цель которой состоит в том, чтобы научиться строить соответствия между входным и выходным изображениями, используя тренировочные данные.

Другими словами, задача состоит в том, чтобы научиться преобразовывать изображение из одной области в другую, получая в итоге изображение со стилем (характеристиками) последней.

Пример работы трансляции изображения: превращение лошади в зебру, и наоборот. (CycleGan)[1]

Описание задачи

Задача разделяется на два вида в зависимости от тренировочных данных.
Различие заключается в том, что в одном случае, у нас есть четкое представление результата, который должен получиться, в то время как в другом случае, у нас есть только множество, определяющее стиль желаемого результата, но четкого результата нет.

Виды тренировочных данных для задачи трансляции изображений.

Обучение на парах изображений

Трансляция изображений, обученная на парах изображений — это сопряженная трансляция одного изображения в другое, где тренировочные данные состоят из такого множества изображений, где каждому входному изображению соответствует выходное изображение, содержащее первое с другим стилем.

Примерами приложения являются следующие трансляции изображений:

  • черно-белое изображение — цветное
  • сегментация изображения (англ. segmentation map) — реальная картинка
  • линии-края (англ. edges) — фотография
  • генерация разных поз и одежды на человеке
  • описывающий изображение текст — фотография
Примеры применения задачи трансляции изображения с парными тренировочными данными. (Pix2Pix)[2]

Обучение на независимых множествах

Трансляция изображения, обученная на двух независимых множествах — это такая трансляция изображений, тренировочные данные которой состоят из двух независимых групп, каждая описывающая свой стиль, а цель которой является научиться отображать эти две группы так, чтобы содержание изображений (общее) сохранялось, а стиль (уникальные элементы изображений) переносился.

Пример:

  • тренировочные данные — два множества: {реальные фотографии}, {картины К.Моне}
  • приложение — взяли любую фотографию, например, поле с цветами; получили поле с цветами в стиле К.Моне.
Примеры применения задачи трансляции изображения с непарными тренировочными данными. (CycleGan)[1]

Pix2Pix

Pix2Pix — это попытка решения задачи трансляции изображений с помощью глубоких сверточных нейронных сетей.

Архитектура

Пример процесса обучения генератора и дискриминатора для Pix2Pix.

Pix2Pix реализует архитектуру условных порождающих состязательных сетей (англ. CGAN), где для генератора взята U-Net[3]-основанная архитектура, а для дискриминатора используется сверточный классификатор PatchGAN[4], который штрафует структуру только в масштабе участков изображения.

Генератор CGAN'a работает следующим образом: на вход подается one-hot вектор класса x и вектор шума z, в результате прохода через условный генератор выдается сгенерированное изображение этого класса, [math]G: \{x,z\} \to y[/math].
В генератор Pix2Pix работает похожим образом, но вместо вектора класса подается изображение, а вектор шума и вовсе убирается, потому что он не вносит значительной случайности для результата работы генератора.

Генератор обучается с целью, чтобы его выходящие изображения максимально правдоподобными, дискриминатор же учится как можно лучше отличать фальшивые изображения от реальных.

Дискриминатор

Архитектура PatchGAN дискриминатора.

Для дискриминатора данной сети используется сверточный дискриминатор PatchGAN.

PatchGAN дискриминатор[4] — это тип дискриминатора для генеративных состязательных сетей, который штрафует структуру на уровне локальных фрагментов (патчей).
Дискриминатор PatchGAN пытается определить, является ли каждый фрагмент размера [math]N\times N[/math] изображения настоящим или поддельным. Этот дискриминатор сверточно запускается по изображению, усредняя все ответы, чтобы посчитать окончательный результат [math]D[/math].
Проще говоря, для каждого фрагмента определяется матрица классификаций, где все значения находятся в промежутке [math][0,1][/math], где [math]0[/math] — подделка. Проходясь сверткой, в итоге получаем конечную матрицу классификаций. Таким образом, для поддельного изображения от генератора PatchGan должен попытаться вывести матрицу нулей.
Интересно также, что [math]N[/math] может быть намного меньше полного размера изображения и при этом давать результаты высокого качества. Это выгодно, потому что меньший PatchGAN имеет меньше параметров, работает быстрее и может применяться к изображениям произвольно большого размера.
Такой дискриминатор эффективно моделирует изображение как Марковское случайное поле[5], предполагая независимость между пикселями, разделенных диаметром более одного фрагмента.

Генератор

Архитектура Pix2Pix генератора.

Для генератора Pix2Pix используется UNet-генератор.
UNet-генератор[3] — это модель encoder-decoder с добавлением пропускаемых соединений между зеркальными слоями в стеках кодировщика и декодера.

Как работает генератор:

  • на вход подается изображение [math]x[/math]
  • далее последовательно применяются свертка, батч-нормализация (англ. Batch Norm layer)[6], функция активации LeackyReLU и пулинг, что, тем самым, уменьшает количество признаков
  • при этом, следуя архитектуре UNet, добавляются пропускаемые соединения между каждым слоем [math]i[/math] и слоем [math]n - i[/math], где [math]n[/math] — общее количество слоев; каждое пропускаемое соединение просто объединяет все каналы на уровне [math]i[/math] с другими на слое [math]n - i[/math]; таким образом, информация, которая могла быть сжата слишком много (потеряна), может все еще проникать и все еще добраться до некоторых из более поздних слоев
  • после того, как достигнут слой минимального размера, начинается работа декодера, который в сущности делает то же, что и кодировщик, только содержит слой, обратный пулингу, который увеличивает количество признаков
  • также в декодере добавляется dropout, чтобы достигнуть случайности в выводе генератора
Архитектура Pix2Pix.

Примеры

Pix2PixHD

См. также

Примечания

Источники информации