Изменения

Перейти к: навигация, поиск

Блендинг изображений

281 байт добавлено, 20:04, 11 января 2021
м
Глубокий блендинг
'''Простой вставкой''' (англ. ''copy and paste'') $CAP(M, S, I)$ будем назвать изображение, полученное наложением части изображения $I$, заданной маской $M$, на изображение $S$.
$CAP(M, S, I) = I \odot M + S \odot (1 - M)$, где $\odot$ {{---}} покомпонентное умножение. }}
 
{{Определение
|definition =
'''Дискретный оператор Лапласа''' (фильтр Лапласа) $\mathbf{D}^2$ {{---}} аналог непрерывного оператора Лапласа $\nabla^2$, который позволяет выделять контуры изображения.
$$\mathbf{D}^2=\begin{bmatrix}0 & 1 & 0\\1 & -4 & 1\\0 & 1 & 0\end{bmatrix}$$ }}
 
** TODO картиночка**
 
Чтобы комбинировать решение задачи бесшовного наложения [[Блендинг изображений#Блендинг Пуассона|методом Пуассона]] с остальными ограничениями, авторы статьи<ref name='ZWS20'/> предлагают использовать функцию потерь $\mathcal{L}_{grad}$. Для сохранения контуров изображений $S$ и $I$ в области вставки используется дискретный оператор Лапласа.
{{Определение
|id=grad_loss_def
|definition =
$\mathcal{L}_{grad}(S, I, M, O) = \displaystyle\frac{1}{2HW}\displaystyle\sum_{m=1}^H \displaystyle\sum_{n=1}^W \left[\nablamathbf{D}^2 f(B) - \left(\nablamathbf{D}^2 f(S) + \nablamathbf{D}^2 f(I)\right) \right]^2_{mn}$ {{---}} градиентная функция потерь (англ. ''Possion gradient loss''). $\nabla^2$ {{---}} оператор Лапласа. $H, W$ {{---}} высота и ширина изображений. $B = CAP(M, S, O)$ {{---}} блендинговое изображение, оптимизируемое относительно $O$. }} Чтобы комбинировать решение задачи бесшовного наложения [[Блендинг изображений#Блендинг Пуассона|методом Пуассона]] с остальными ограничениями, авторы статьи<ref name='ZWS20'/> предлагают использовать функцию потерь $\mathcal{L}_{grad}$, являющуюся приближением уравнения Пуассона $(2)$. $\mathcal{L}_{grad}$ минимизирует разность градиента искомого изображения $B$ и суммы градиентов входных изображений $S$ и $I$.
Рассмотрим область $\overline{\Omega} = \{\;p \;| \;M_p = 0\; \}$. Заметим, что градиент $I$ в $\overline{\Omega}$ равен нулю. Тогда градиенты $S$ и $B$ совпадают, и задача минимизации $\mathcal{L}_{grad}$ решается только в области вставки.
128
правок

Навигация