Компьютерное зрение в микроскопии — различия между версиями
Sashapff (обсуждение | вклад) (→Классификация клеток) (Метки: правка с мобильного устройства, правка из мобильной версии) |
Sashapff (обсуждение | вклад) (→Классификация клеток) (Метки: правка с мобильного устройства, правка из мобильной версии) |
||
Строка 3: | Строка 3: | ||
На данный момент компьютерное зрение нашло применение в большинстве направлений, где есть необходимость обрабатывать и анализировать изображения. Микроскопия не стала исключением. Теперь задачи, направленные непосредственно на работу с изображениями, можно решить, например, построив соответствующую [[Сверточные нейронные сети |сверточную нейронную сеть]]. | На данный момент компьютерное зрение нашло применение в большинстве направлений, где есть необходимость обрабатывать и анализировать изображения. Микроскопия не стала исключением. Теперь задачи, направленные непосредственно на работу с изображениями, можно решить, например, построив соответствующую [[Сверточные нейронные сети |сверточную нейронную сеть]]. | ||
== Классификация клеток == | == Классификация клеток == | ||
− | Классификация клеток является базовой задачей микроскопии. Обычно для этого используются изображения, полученные на флуоресцентных микроскопах, так как классификаторы для изображений с обычных оптических микроскопов не способны отразить биологическое разнообразие различных типов клеток. Клетки можно делить по фазе в клеточном цикле, типу (повержденные или нет, раковые или | + | Классификация клеток является базовой задачей микроскопии. Обычно для этого используются изображения, полученные на флуоресцентных микроскопах, так как классификаторы для изображений с обычных оптических микроскопов не способны отразить биологическое разнообразие различных типов клеток. Клетки можно делить по фазе в клеточном цикле, типу (повержденные или нет, раковые или нормальные), физиологическому состоянию, виду и другим признакам. Для большинства задач классификации уже существуют готовые архитектуры сверточных сетей, использующие флуоресцентные метки в качестве категориальных. |
=== Определение фазы клеточного цикла === | === Определение фазы клеточного цикла === | ||
− | Одним из признаков, по которым можно разделить клетки, является определение фазы клеточного цикла, в которой находится клетка. Эта задача имеет практическое применение для обнаружения поврежденных клеток, которые при визуализации будут кластеризоваться отдельно от остальных | + | Одним из признаков, по которым можно разделить клетки, является определение фазы клеточного цикла, в которой находится клетка. Эта задача имеет практическое применение для обнаружения поврежденных клеток, которые при визуализации будут кластеризоваться отдельно от остальных. Сверточная сеть обучается на изображениях с флуоресцентными метками, о которых было сказано ранее, и дает на выходе не только классификацию каждой клетки, а также визуализирует процесс клеточного цикла, используя нелинейное уменьшение размерности. Классификация и визуализация являются всего лишь различными способами интерпретации результатов, поэтому строятся на основе одних и тех же выведенных закономерностей<ref>[https://www.nature.com/articles/s41467-017-00623-3#supplementary-information Philipp Eulenberg — Reconstructing cell cycle and disease progression using deep learning, 2017]</ref>. |
[[Файл:Cell cycle classification.png|center|700px|thumb|Архитектура сверточной нейронной сети для определения фазы клетки из [https://www.nature.com/articles/s41467-017-00623-3#supplementary-information/ статьи.]]] | [[Файл:Cell cycle classification.png|center|700px|thumb|Архитектура сверточной нейронной сети для определения фазы клетки из [https://www.nature.com/articles/s41467-017-00623-3#supplementary-information/ статьи.]]] | ||
− | Особенностью работы данной сверточной сети является необходимость разметить только небольшую часть данных, на основании чего она далее учится размечать самостоятельно. | + | Особенностью работы данной сверточной сети является необходимость разметить только небольшую часть данных, на основании чего она далее учится размечать самостоятельно. Интересно, что при визуализации фазы упорядочены в хронологически правильном порядке, несмотря на то, что информация о порядке фаз не передавалась в сеть. |
− | |||
=== Идентификация раковых клеток === | === Идентификация раковых клеток === | ||
Другой задачей классификации клеток является обнаружение раковых клеток. Для решения этой задачи используется сверточная нейронная сеть с архитектурой VGG-16, а также трансферное обучение, то есть модель предварительно обучается на другом огромном объеме данных<ref>[https://pubmed.ncbi.nlm.nih.gov/30865716/ Ronald Wihal Oei {{---}} Convolutional neural network for cell classification using microscope images of intracellular actin networks, 2019]</ref>. | Другой задачей классификации клеток является обнаружение раковых клеток. Для решения этой задачи используется сверточная нейронная сеть с архитектурой VGG-16, а также трансферное обучение, то есть модель предварительно обучается на другом огромном объеме данных<ref>[https://pubmed.ncbi.nlm.nih.gov/30865716/ Ronald Wihal Oei {{---}} Convolutional neural network for cell classification using microscope images of intracellular actin networks, 2019]</ref>. |
Версия 19:17, 12 января 2021
Компьютерное зрение помогает автоматизировать обработку изображений, полученных с помощью микроскопии. С его появлением стало возможным эффективно и с хорошей точностью классифицировать клетки, сегментировать полученные изображения, улучшать их качество и решать другие задачи без участия человека.
Содержание
Задачи компьютерного зрения в микроскопии
На данный момент компьютерное зрение нашло применение в большинстве направлений, где есть необходимость обрабатывать и анализировать изображения. Микроскопия не стала исключением. Теперь задачи, направленные непосредственно на работу с изображениями, можно решить, например, построив соответствующую сверточную нейронную сеть.
Классификация клеток
Классификация клеток является базовой задачей микроскопии. Обычно для этого используются изображения, полученные на флуоресцентных микроскопах, так как классификаторы для изображений с обычных оптических микроскопов не способны отразить биологическое разнообразие различных типов клеток. Клетки можно делить по фазе в клеточном цикле, типу (повержденные или нет, раковые или нормальные), физиологическому состоянию, виду и другим признакам. Для большинства задач классификации уже существуют готовые архитектуры сверточных сетей, использующие флуоресцентные метки в качестве категориальных.
Определение фазы клеточного цикла
Одним из признаков, по которым можно разделить клетки, является определение фазы клеточного цикла, в которой находится клетка. Эта задача имеет практическое применение для обнаружения поврежденных клеток, которые при визуализации будут кластеризоваться отдельно от остальных. Сверточная сеть обучается на изображениях с флуоресцентными метками, о которых было сказано ранее, и дает на выходе не только классификацию каждой клетки, а также визуализирует процесс клеточного цикла, используя нелинейное уменьшение размерности. Классификация и визуализация являются всего лишь различными способами интерпретации результатов, поэтому строятся на основе одних и тех же выведенных закономерностей[1].
Особенностью работы данной сверточной сети является необходимость разметить только небольшую часть данных, на основании чего она далее учится размечать самостоятельно. Интересно, что при визуализации фазы упорядочены в хронологически правильном порядке, несмотря на то, что информация о порядке фаз не передавалась в сеть.
Идентификация раковых клеток
Другой задачей классификации клеток является обнаружение раковых клеток. Для решения этой задачи используется сверточная нейронная сеть с архитектурой VGG-16, а также трансферное обучение, то есть модель предварительно обучается на другом огромном объеме данных[2].
Такая сверточная сеть лучше справляется с задачей классификации клеток по сравнению с экспертом-человеком, особенно на изображениях с недостаточно хорошим качеством.
Сегментация изображений
Задача сегментации изображений, полученных с микроскопа, состоит в том, чтобы аннотировать их, то есть отмечать границы объектов (клеток, ядер). Для решения этой задачи обычно используется модифицированная полносвязная сверточная сеть U-Net[3].
Сеть U-Net получила широкое распространение благодаря способности последовательно распознавать как большие, так и мелкие частицы, а также устойчивости к различным условиям визуализации и наборам данных.
Улучшение качества изображений
Не всегда изображения, полученные с помощью микроскопии, имеют достаточно хорошее для дальнейшей работы качество. Сверточные сети, которые улучшают качество уже имеющихся снимков, не имеют специфичных отличий.
А вот другая интересная задача направлена сразу на получение более четких изображений. Она заключается в предсказывании положения фокуса микроскопа при покадровой съемке. Для ее решения используется сверточная сеть, состоящая из двух блоков свертки и двух полносвязных блоков[4].
Такая сверточная сеть показывает большую точность, чем группа людей-экспертов.
См. также
Примечания
- ↑ Philipp Eulenberg — Reconstructing cell cycle and disease progression using deep learning, 2017
- ↑ Ronald Wihal Oei — Convolutional neural network for cell classification using microscope images of intracellular actin networks, 2019
- ↑ Olaf Ronneberger— Reconstructing cell cycle and disease progression using deep learning, 2015
- ↑ Ling Wei— Reconstructing cell cycle and disease progression using deep learning, 2018