Обучение на больших данных — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Страница создана. Добавлены первые два раздела: "Основные понятия", "Особенности и трудности работы с большими данными")
(нет различий)

Версия 18:43, 13 января 2021

Эта статья находится в разработке!

Обучение на больших данных — раздел машинного обучения, специализирующийся на построении моделей, обрабатывающих большие объёмы данных, т. н. "big data" или "большие данные".


Основные понятия

Сам термин "большие данные" - очень неоднозначная вещь, так как в ходе истории компьютерной техники объём данных и носителей этих данных возрастал в геометрической прогрессии. 50 лет назад жёсткий диск на 5 мегабайт нельзя было поднять без помощи автопогрузчика. В наши же дни маленькая коробочка весом в полкило может вмещать до нескольких терабайт данных (а то и десятков терабайт), а данные, хранящиеся на различных серверах можно исчислять петабайтами. Поэтому вопрос, какие же данные считать большими, довольно запутанный.

В качестве универсального решения было принято так, что те данные, которые невозможно уместить на одном сервере, можно называть "большими". Но это далеко не все признаки "больших" данных. В наше время на серверных кластерах информация постоянно двигается, существует понятие "поток данных", генерируется много новой информации, и всё это постоянно записывается и перезаписывается. Из-за этого возникает ряд проблем.

Особенности и трудности работы с большими данными

При работе с большими данными важно помнить некоторые их особенности:

  • Данных очень много. Поэтому необходимо хранилище соответствующего размера, которое, как правило, является распределённым;
  • Любая попытка обработать большие данные целиком скорее всего приведёт к очень длительному ожиданию результата, если обработка происходит традиционными способами (например, чтение массива в цикле);
  • В связи с большим потоком данных, конченый их набор постоянно изменяется, поэтому необходимо анализировать данные особым образом. Так, чтобы своевременно актуализировать информацию о них;

Также стоит отметить, что в связи с большой популярностью "больших данных", эта сфера очень быстро развивается, постоянно появляются всё новые технологии и инструменты для работы. Для бизнеса это приводит к дополнительным материальным затратам, т. к. крайне важно "идти в ногу со временем". Для специалистов по "большим данным" это так же приводит к дополнительным трудностям, т. к. необходимо крайне быстро овладевать этими новыми технологиями.