Изменения
→Построение с помощью свёрточных нейронных сетей
* '''Создаем карту смещений''': Используя 2 изображения с камер, близко расположенных друг у другу, создаем карту различий <math>y</math>, точно так же как в методе построения по стереопаре.
* '''Функция потерь''': определим [[Функция потерь и эмпирический риск|функцию потерь]], для предсказанной карты <math>\hat y</math>, <math>d_i = log( y_i) - log (\hat y_i)</math>, <math>\lambda \in [0, 1]</math> и <math>n </math> - количество пикселей. Гиперпараметр <math>\lambda</math>, нужен для того, чтобы функция потерь меньше росла, при большом количестве пикселей, предсказание для которых достаточно близко к реальному. Например, если <math>\lambda = 0</math>, то мы просто придём к оптимизации в [[Регуляризация|L2]].
<math>L(y, \hat y) = \frac{1}{n} \sum\limits_{i} d^2_i - \frac{\lambda}{n^2}(\sum\limits_{i} d_i)^2</math>