Полные системы функций. Теорема Поста о полной системе функций — различия между версиями
Rybak (обсуждение | вклад) м (tex поддерживает знак =) |
(→Формулировка и доказательство критерия) |
||
Строка 46: | Строка 46: | ||
В итоге имеем три функции: '''НЕ''', <tex>0</tex>, <tex>1</tex>. | В итоге имеем три функции: '''НЕ''', <tex>0</tex>, <tex>1</tex>. | ||
− | Используем нелинейную функцию <tex>f_l</tex>. Среди нелинейных членов <tex>f_l</tex>, выберем тот, в котором минимальное количество элементов, все элементы, кроме двух, в этом члене, сделаем равными 1, оставшиеся 2 | + | Используем нелинейную функцию <tex>f_l</tex>. Среди нелинейных членов <tex>f_l</tex>, выберем тот, в котором минимальное количество элементов, все элементы, кроме двух, в этом члене, сделаем равными 1, оставшиеся 2 назовем <tex>x_1</tex> и <tex>x_2</tex>, а все элементы, не входящие в данный член, сделаем равными 0'''.''' Тогда <tex>f_l = x_1 \land x_2 [ \oplus x_1] [\oplus x_2][ \oplus ~1]</tex>, где в квадратных скобках указаны члены, которые могут и не присутствовать. |
Рассмотрим несколько вариантов: | Рассмотрим несколько вариантов: |
Версия 04:06, 17 марта 2011
Критерий Поста
Критерий Поста — одна из центральных теорем в теории булевых функций, устанавливающая необходимое и достаточное условие для того, чтобы некоторый набор булевых функций обладал достаточной выразительностью, чтобы представить любую булеву функцию. Впервые сформулирован американским математиком Эмилем Постом.
Формулировка и доказательство критерия
Теорема: |
Система булевых функций F является полной тогда и только тогда, когда она не содержится ни в одном из классов , т.е. когда в ней имеется хотя бы одна функция, не сохраняющая 0, хотя бы одна функция, не сохраняющая 1, хотя бы одна несамодвойственная функция, хотя бы одна немонотонная функция и хотя бы одна нелинейная функция. |
Доказательство: |
Заметим, что необходимость этого утверждения очевидна, так как если бы все функции из набора К входили в один из перечисленных классов, то и все суперпозиции, а значит, и замыкание набора входило бы в этот класс и класс К не мог быть полным. Докажем достаточность этого утверждения. Рассмотрим функцию, несохраняющую 0 — . . может принимать два значения:а) , тогда .б) , тогда .Рассмотрим функцию, несохраняющую 1 — . . может принимать два значения:а) , тогда .б) , тогда .Возможны 4 варианта: 1) Мы получили функцию НЕ. Используем несамодвойственную функцию .По определению найдется такой вектор , что . .Возьмем , где , при и , при .Нетрудно заметить, что . Таким образом мы получили одну из констант.2)Мы получили НЕ и . .3)Мы получили НЕ и . .4)Мы получили и .Рассмотрим немонотонную функцию . Существуют такие , что , , зафиксируем все , тогда .В итоге имеем три функции: НЕ, , .Используем нелинейную функцию . Среди нелинейных членов , выберем тот, в котором минимальное количество элементов, все элементы, кроме двух, в этом члене, сделаем равными 1, оставшиеся 2 назовем и , а все элементы, не входящие в данный член, сделаем равными 0. Тогда , где в квадратных скобках указаны члены, которые могут и не присутствовать.Рассмотрим несколько вариантов:
|
Источники
- Википедия — свободная энциклопедия
- Образовательный сайт MiniSoft
- Post's lattice