135
правок
Изменения
Fix new issue #1
{{В разработке}}
Автоматическое создание реалистичных высококачественных изображений из текстовых описаний был было бы интересен интересно и довольно полезенполезно, так как имеет множество практических применений, но современные системы искусственного интеллекта все еще далеки от этой цели, так как это является довольно сложной задачей в области компьютерного зрения. Однако в последние годы были разработаны универсальные и мощные рекуррентные архитектуры нейронных сетей для изучения различных представлений текстовых признаков. Между тем, глубокие сверточные [[Generative Adversarial Nets (GAN)| генеративные состязательные сети]] (англ. ''Generative Adversarial Nets, GANs'') начали генерировать весьма убедительные изображения определенных категорий, таких как лица, обложки альбомов и интерьеры комнат. Образцы, генерируемые существующими подходами "текст-изображение", могут приблизительно отражать смысл данных описаний, но они не содержат необходимых деталей и ярких частей объекта. В данной статье рассмотрены формулировка и глубокая архитектура GAN, а также объединены достижения в генерации изображений по тексту.
== Обзор генеративных моделей ==