Изменения

Перейти к: навигация, поиск

Синтетические наборы данных

Нет изменений в размере, 23:41, 24 января 2021
м
Нет описания правки
Чтобы полученный набор выглядел натурально, применяется следующий подход<ref name="SynthText-paper">Gupta A., Vedaldi A., Zisseman A. Synthetic Data for Text Localisation in Natural Images // IEEE Conference on Computer Vision and Pattern Recognition — 2016</ref>. Сначала изображение делится на несколько областей в зависимости от значений соседних цветов и текстуры. Затем с помощью [[Сверточные нейронные сети|CNN]] строится карта глубины — определяется, какая точка ближе к камере, а какая дальше (см. рисунок 7). После этого можно по каждой области определить нормаль к поверхности. Алгоритм исключает из выбора неподходящие поверхности — очень маленькие, непропорциональные или ортогональные направлению съемки. Наконец, на основе цвета области выбирается цвет текста (и иногда — контура), случайным образом выбирается шрифт, после чего текст «накладывается» на изображение с помощью геометрических трансформаций и преобразования Пуассона. Этот процесс повторяется несколько раз, чтобы наложить сразу несколько текстовых объектов на изображение.
{{wide image|Synthtext-Generation-Process.png|1200px1100px|Рисунок 7. Процесс нанесения текста на изображение. Слева направо: исходное изображение; карта глубины (светлее — дальше); разбиение на поверхности; области для нанесения текста и случайно выбранный для них цвет; готовое изображение<ref name="SynthText-paper"/>.}}
[[Файл:UnityEyes.png|200px|thumb|left|Рисунок 8. Образцы глаз, смотрящие в различных направлениях<ref name="unityeyes">Wood, E., Baltrusaitis, T., Morency, L., Robinson, P., Bulling, A. Learning an appearance-based gaze estimator from one million synthesised images // Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications — 2016</ref>.]]

Навигация