Изменения

Перейти к: навигация, поиск

Синтетические наборы данных

Нет изменений в размере, 00:13, 25 января 2021
м
Нет описания правки
Нередко возникают ситуации, когда получение реальных данных сложно или дорого, но при этом известны требования к таким объектам, правила создания и законы распределения. Как правило, это происходит, когда речь идёт о чувствительных персональных данных — например, информации о банковских счетах или медицинской информации. В таких случаях необходимые наборы данных можно [[Генерация объектов|программно сгенерировать]].
 
== Применение ==
 
Сгенерированные объекты можно использовать в [[Общие понятия#Классификация задач машинного обучения|задаче обучения с учителем]] для расширения обучающего множества, сведя её к задачам частичного обучения и самообучения. Довольно распространённым подходом является обучение сначала на большом наборе синтетических данных, а затем дообучение на небольшом наборе имеющихся реальных данных. Иногда при обучении реальные данные не используются вовсе. При этом в тестовых множествах использовать синтетические наборы данных нельзя: в них должны быть только реальные объекты.
 
Синтетические данные используют не только при недоступности реальных, но и для того, чтобы изменить распределение классов в уже имеющихся данных, дополнив их по [[Алгоритмы сэмплирования|определённому алгоритму]]<ref name="wiki:oversampling">Oversampling and undersampling in data analysis — https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis — Retrieved January 11, 2021</ref>.
 
[[Файл:Nvidia-drive-sample.png|400px|thumb|right|Рисунок 9. Примеры миров, сгенерированных NVIDIA DRIVE<ref name="nvidia">[https://www.nvidia.com/content/dam/en-zz/Solutions/deep-learning/resources/accelerating-ai-with-synthetic-data-ebook/accelerating-ai-with-synthetic-data-nvidia_web.pdf El Emam, K. Accelerating AI with Synthetic Data] — Beijing, Boston, Farnham, Sebastopol, Tokyo: O'Reilly Media, Inc., 2020.</ref>.]]
 
Синтетические данные активно используются при обучении алгоритмов управления [[wikipedia:Self-driving car|автономным транспортом]]. Эти алгоритмы решают две задачи: сначала [[Обнаружение и обработка дорожных знаков и пешеходов|выявляют окружающие объекты]] — машины, дорожные знаки, пешеходов, а затем принимают решение о направлении и скорости дальнейшего движения. При реализации таких алгоритмов наиболее важно поведение транспортного средства в критических ситуациях, таких как помехи на дороге или некорректные показания сенсоров — от этого могут зависеть жизни людей. В реальных данных же, наоборот, в основном присутствуют штатные ситуации.
 
Для решения этой проблемы компания NVIDIA разработала платформу NVIDIA DRIVE Constellation<ref name="nvidia" />, которая состоит из двух серверов. Один из них исполняет роль обучаемого транспортного средства, а второй непрерывно генерирует для первого различные «миниатюрные миры», включающие в себя симуляцию вывода с камеры, радара и лидаров. В обучении используется два режима — симуляция после восприятия (англ. ''postperception simulation'') и сквозная симуляция (англ. ''end-to-end simulation''). В режиме симуляции объектов из сгенерированных миров (см. рисунок 9) обучаемому алгоритму передаётся список объектов и их подробное описание, в свою очередь алгоритм должен выбрать дальнейшие действия автомобиля. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мира, и алгоритм должен также распознать с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож на реальный мир и учитывает помехи, возникающие на сенсорах.
 
Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для работы таких алгоритмов исходный набор изображений расширяется их копиями, к которым применяются некие преобразования из фиксированного набора. На основе полученных изображений генерируется набор, в котором входными данными считаются полученные изображения, а целевыми — исходные. В самом деле, получить реальные данные для такой задачи — фотографию и её же искажённую копию — довольно затруднительно, а применение таких преобразований довольно легко автоматизируется. Таким образом, если исходные изображения достаточно хорошо описывали источник данных, то полученный набор данных можно применять для обучения алгоритма восстановления изображений, устраняющего применённые преобразования.
 
Также с помощью синтетических наборов данных можно упростить обучение алгоритмов [[Компьютерное зрение|компьютерного зрения]], решающих задачи [[Сегментация изображений|семантической сегментации]], [[Компьютерное зрение#Идентификация|поиска]] и [[Компьютерное зрение#Распознавание объектов|локализации]] объектов. В данном случае подходят наборы, в которых искомые объекты определённым образом наносятся на фоновое изображение. В частности, таким объектом может быть текст — тогда с помощью полученного набора может быть решена задача [[Распознавание текста на изображении|распознавания текста на изображении]].
 
Синтетические данные используются и для создания алгоритмов [[Реидентификация|реидентификации]]<sup>[на 25.01.21 не создан]</sup> — определения, действительно ли на двух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, на пограничных пунктах и так далее. В этом случае реальные данные собрать довольно сложно, потому что требуется найти много фотографий одних и тех же людей в разных позах, с разных ракурсов и в разной одежде.
 
При генерации синтетических наборов данных необходимо учитывать специфику каждого конкретного случая, общего алгоритма, подходящего для всех случаев не существует. Как правило, общие алгоритмы наподобие добавления средних значений оказываются нерепрезентативными.
== Виды генерации ==
В случае, когда реальные данные отсутствуют или их сбор невозможен (из-за большой длительности или дороговизны процесса), наборы генерируются полностью случайным образом на основе некой статистической модели, которая учитывает законы распределения реальных данных. Однако, такой подход не всегда оправдывает себя из-за того, что синтетические данные могут не учитывать весь спектр возможных случаев, и полученная с помощью такого набора модель может давать непредсказуемые результаты в крайних случаях.
Также применяется [[wikipedia:Data_augmentation|аугментация]] (англ. augmentation) — генерация — генерация наборов на основе имеющихся реальных данных. К имеющимся данным применяются различные способы искажения: например, для изображений могут использоваться различные геометрические преобразования, искажения цвета, кадрирование, поворот, добавление шума и иные. Для числовых данных могут использоваться такие искажения, как добавление объектов с усреднёнными значениями, смешивание с объектами из другого распределения, добавление случайных выбросов.
== Достоинства и недостатки ==
* Излишняя «стерильность» получаемых данных: в общем случае неизвестно, какими могут быть выбросы в реальных данных<ref>Если выбросы известны, то проблема может быть решена путём настройки параметров генератора.</ref>.
 
 
== Применение ==
 
Сгенерированные объекты можно использовать в [[Общие понятия#Классификация задач машинного обучения|задаче обучения с учителем]] для расширения обучающего множества, сведя её к задачам частичного обучения и самообучения. Довольно распространённым подходом является обучение сначала на большом наборе синтетических данных, а затем дообучение на небольшом наборе имеющихся реальных данных. Иногда при обучении реальные данные не используются вовсе. При этом в тестовых множествах использовать синтетические наборы данных нельзя: в них должны быть только реальные объекты.
 
Синтетические данные используют не только при недоступности реальных, но и для того, чтобы изменить распределение классов в уже имеющихся данных, дополнив их по [[Алгоритмы сэмплирования|определённому алгоритму]]<ref name="wiki:oversampling">Oversampling and undersampling in data analysis — https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis — Retrieved January 11, 2021</ref>.
 
[[Файл:Nvidia-drive-sample.png|400px|thumb|right|Рисунок 9. Примеры миров, сгенерированных NVIDIA DRIVE<ref name="nvidia">[https://www.nvidia.com/content/dam/en-zz/Solutions/deep-learning/resources/accelerating-ai-with-synthetic-data-ebook/accelerating-ai-with-synthetic-data-nvidia_web.pdf El Emam, K. Accelerating AI with Synthetic Data] — Beijing, Boston, Farnham, Sebastopol, Tokyo: O'Reilly Media, Inc., 2020.</ref>.]]
 
Синтетические данные активно используются при обучении алгоритмов управления [[wikipedia:Self-driving car|автономным транспортом]]. Эти алгоритмы решают две задачи: сначала [[Обнаружение и обработка дорожных знаков и пешеходов|выявляют окружающие объекты]] — машины, дорожные знаки, пешеходов, а затем принимают решение о направлении и скорости дальнейшего движения. При реализации таких алгоритмов наиболее важно поведение транспортного средства в критических ситуациях, таких как помехи на дороге или некорректные показания сенсоров — от этого могут зависеть жизни людей. В реальных данных же, наоборот, в основном присутствуют штатные ситуации.
 
Для решения этой проблемы компания NVIDIA разработала платформу NVIDIA DRIVE Constellation<ref name="nvidia" />, которая состоит из двух серверов. Один из них исполняет роль обучаемого транспортного средства, а второй непрерывно генерирует для первого различные «миниатюрные миры», включающие в себя симуляцию вывода с камеры, радара и лидаров. В обучении используется два режима — симуляция после восприятия (англ. ''postperception simulation'') и сквозная симуляция (англ. ''end-to-end simulation''). В режиме симуляции объектов из сгенерированных миров (см. рисунок 9) обучаемому алгоритму передаётся список объектов и их подробное описание, в свою очередь алгоритм должен выбрать дальнейшие действия автомобиля. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мира, и алгоритм должен также распознать с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож на реальный мир и учитывает помехи, возникающие на сенсорах.
 
Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для работы таких алгоритмов исходный набор изображений расширяется их копиями, к которым применяются некие преобразования из фиксированного набора. На основе полученных изображений генерируется набор, в котором входными данными считаются полученные изображения, а целевыми — исходные. В самом деле, получить реальные данные для такой задачи — фотографию и её же искажённую копию — довольно затруднительно, а применение таких преобразований довольно легко автоматизируется. Таким образом, если исходные изображения достаточно хорошо описывали источник данных, то полученный набор данных можно применять для обучения алгоритма восстановления изображений, устраняющего применённые преобразования.
 
Также с помощью синтетических наборов данных можно упростить обучение алгоритмов [[Компьютерное зрение|компьютерного зрения]], решающих задачи [[Сегментация изображений|семантической сегментации]], [[Компьютерное зрение#Идентификация|поиска]] и [[Компьютерное зрение#Распознавание объектов|локализации]] объектов. В данном случае подходят наборы, в которых искомые объекты определённым образом наносятся на фоновое изображение. В частности, таким объектом может быть текст — тогда с помощью полученного набора может быть решена задача [[Распознавание текста на изображении|распознавания текста на изображении]].
 
Синтетические данные используются и для создания алгоритмов [[Реидентификация|реидентификации]]<sup>[на 25.01.21 не создан]</sup> — определения, действительно ли на двух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, на пограничных пунктах и так далее. В этом случае реальные данные собрать довольно сложно, потому что требуется найти много фотографий одних и тех же людей в разных позах, с разных ракурсов и в разной одежде.
 
При генерации синтетических наборов данных необходимо учитывать специфику каждого конкретного случая, общего алгоритма, подходящего для всех случаев не существует. Как правило, общие алгоритмы наподобие добавления средних значений оказываются нерепрезентативными.
== Примеры ==

Навигация