Изменения

Перейти к: навигация, поиск

Функция Мебиуса

66 байт добавлено, 11:33, 9 марта 2021
Свойства
==== Свойства ====
*1. Функция Мёбиуса [[Мультипликативность функции, свертка Дирихле|мультипликативна]]для взаимно простых <tex>m</tex> и <tex>n</tex>.
** '''Доказательство:''' <tex> \mu (mn) = \mu(m) \mu (n) </tex>. Если '''m''' или '''n''' <tex> \vdots p^2 </tex>, то <tex> 0 = 0</tex>. Иначе пусть <tex> n=\prod p_i, m=\prod p_j </tex>, и <tex> k_n, k_m </tex> {{---}} количество чисел в произведении, соответственно. <tex> \mu (mn)= (-1)^{k_n + k_m} = (-1)^{k_n}(-1)^{k_m} </tex> ч.т.д.
*2. Пусть <tex> \theta (a) </tex> {{---}} [[Мультипликативность функции, свертка Дирихле|мультипликативная]] функция, и <tex> a = {p_1}^{\alpha_1} {p_2}^{\alpha_2} \ldots {p_k}^{\alpha_k}</tex> {{---}} каноническое разложение числа '''a''', тогда <center> <tex> \sum_{d|a} \mu(d) \theta(d) = (1 - \theta(p_1))(1 - \theta(p_2))\ldots(1 - \theta(p_k))</tex>. </center>
Анонимный участник

Навигация