from sklearn.datasets import fetch_mldatafetch_openml  from numpy import arange  import random  from sklearn.tree import DecisionTreeClassifier  from sklearn import datasets, svm, metrics
[[Файл:Mnist-predict.png|мини|Рисунок 2. Результат работы классификатора]]
  mnist = fetch_mldatafetch_openml('MNIST originalMNIST_784')  indices = arange(len(mnist.data))  randidx = random.sample(list(indices), 500)  mnist.data = mnist.data[randidx]  mnist.target = mnist.target[randidx]  X = mnist.data  Y = mnist.target  train = len(X)//2  clf = DecisionTreeClassifier(criterion="entropy", max_depth=5)  clf.fit(X[:train], Y[:train])  expected = Y[train:]  predicted = clf.predict(X[train:])  print("Classification report for classifier %s:\n%s\n"     % (clf, metrics.classification_report(expected, predicted)))
    digit    precision    recall  f1-score   support