49
правок
Изменения
Нет описания правки
<tex>|S|\; + \; \sum_{i=1}^{k}k_i = n</tex> т. к в сумме это все вершины исходного графа <tex>G</tex>.
Возьмем данное равенство по модулю два: <tex>(|S|\; mod\; 2 \; + \; \sum_{i=1}^{k}(k_i \; mod \; 2)) \; mod \; 2 = n \; mod \; 2</tex>
В сумме <tex>\sum_{i=1}^{k}(k_i \; mod \; 2)</tex> число единиц равно числу нечетных компонент <tex>odd(G \setminus S)</tex>. Таким образом, <tex> \forall S \in V \; (odd(G \setminus S) + |S|) \; mod \; 2 = n \; mod \; 2 </tex>.
}}
|statement= <tex>def G = \max\limits_{S \in V} (odd(G \setminus S) - |S|)</tex>
|proof=
<tex> \forall S \in V \; (odd(G \setminus S) + |S|) \; mod \; 2 = n \; mod \; 2 </tex>Рассмотрим несколько случаев:1) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = 0 </tex>, тогда <tex>\forall \; S \in \; V: \; odd(G \setminus S) \leq |S| \; </tex> и выполнен критерий Татта, значит, в графе есть совершенное паросочетание, т.е. его дефицит равен нулю.
}}