49
правок
Изменения
→Формула Бержа
2) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k \; </tex>, тогда рассмотрим исходный граф <tex>G</tex> и полный граф <tex>K_k</tex> с <tex>k</tex> вершинами, множество вершин нового графа обозначим как <tex>W</tex>. Каждую вершину вспомогательного графа соединим с каждой вершиной <tex>G</tex>. Получим новый граф <tex>H \; = \; K_k + G \;</tex>, докажем, что для него выполнено условие Татта. Докажем, что <tex>\forall S \in V_{H}: odd(G \setminus S) \; \leq \; |S| \; </tex>. Рассмотрим <tex>S \; \subset \; V_H\;</tex>.
Если <tex>W \not\subset S</tex>, тогда поскольку граф <tex>K_k</tex> полный и все его вершины связаны с каждой вершиной графа <tex>G</tex>, то граф <tex>H</tex> связный и <tex>odd(H \setminus S) \; = \; 0 \;</tex> или <tex>odd(G \setminus S) \; = \; 1 \;</tex>. В случае <tex>odd(H \setminus S) \; = \; 0\; </tex> условие очевидно выполняется т.к <tex>\forall S \in G : 0 \; \leq \; |S|\;</tex>.
Рассмотрим случай <tex>odd(H \setminus S) \; = \; 1 \;</tex>, <tex>|V_H| \; = \; n \; + \; k \; = \; n \; + \; odd(G \setminus A) - |A|</tex>, где <tex>A = arg \max\limits_{S \in V}(odd(H \setminus S) - |S|) </tex>. Разность <tex>odd(G \setminus A) - |A|</tex> имеет ту же четность, что и <tex>n</tex>, поэтому <tex>|V_H|</tex> четно, значит, по лемме, мощность <tex>S</tex> нечетна, следовательно, она не равна нулю, значит <tex> 1 \leq |S| </tex>.