Участник:Feorge — различия между версиями
Feorge (обсуждение | вклад) м |
Feorge (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
== Определение и устранение ошибок в общем случае == | == Определение и устранение ошибок в общем случае == | ||
− | Пусть <tex>B = \{0, 1\}</tex> — булевое множество. Рассмотрим <tex>B^n</tex> и [[Расстояние Хэмминга#def1|расстояние Хемминга]] <tex>H(x,y)</tex>. Пусть <tex>c:\Sigma \to B^n</tex> {{---}} разделяемый код постоянной длины. Обозначим <tex>\min\limits_{x,y\in \Sigma}H(c(x), c(y)) = d(c)</tex>. | + | Пусть <tex>B = \{0, 1\}</tex> — булевое множество. Рассмотрим <tex>B^n</tex> и [[Расстояние Хэмминга#def1|расстояние Хемминга]] <tex>H(x,y)</tex>. Пусть <tex>c:\Sigma \to B^n</tex> {{---}} разделяемый код постоянной длины. Обозначим <tex>\min\limits_{\substack{x, y\in \Sigma \\ x\neq y}}H(c(x), c(y)) = d(c)</tex>. |
{{Определение | {{Определение |
Версия 00:38, 27 июня 2021
Определение и устранение ошибок в общем случае
Пусть расстояние Хемминга . Пусть — разделяемый код постоянной длины. Обозначим .
— булевое множество. Рассмотрим и
Определение:
Код
обнаруживает ошибок, если .Определение:
Код
исправляет ошибок, если .Утверждение: |
Код, исправляющий ошибок, обнаруживает ошибок. |
Для составления оценок снизу и сверху на параметры кодирования нам понадобится понятие шара.
Определение:
Булев шар — подмножество
вида . называется его центром, — радиусом. Булев шар с центром и радиусом обознчается .Определение:
Обьёмом шара
в называется величина .
Обьём шара радиуса в обозначается .Утверждение: |
Обьём шара не зависит от его центра. |
Заметим, что шар всегда можно получить из другого шара с помощью "параллельного переноса" на вектор (здесь обозначает побитовый ), т.е. . Покажем это. Необходимо доказать, что при и . . |
Можно сформулировать свойство кодов, исправляющих
ошибок, в терминах булевых шаров.Лемма: |
Пусть — код, исправляющий ошибок.
Тогда для любых неравных выполнено . |
Доказательство: |
Т.к код Допустим, исправляет ошибок, по определению . такие, что и , т.е существует , такой что и . Тогда по неравенству треугольника . Это противоречит тому, что . |
Граница Хэмминга, граница Гильберта
Теорема (Граница Хэмминга): |
Пусть — код для -символьного алфавита, исправляющий ошибок.
Тогда выполнено неравенство . |
Доказательство: |
Это прямое следствие предыдущей леммы. Всего есть попарно непересекающихся шаров. Их суммарный обьём равен , и он не может превосходить общее число возможных веткоров . |
Граница Хэмминга даёт верхнюю оценку на скорость передачи сообщений в канале с ошибками. Прологарифмировав неравенство, получим
. Здесь это плотность кодирования, количество информации в одном символе алфавита на размер кода. Таким образом, при кодировании с защитой от ошибок падает скорость передачи.Аналогично составляется оценка в другую сторону.
Теорема (Граница Гильберта): |
Если выполнено неравенство , то существует код для -символьного алфавита , исправляющий ошибок. |
Доказательство: |
Построим этот код алгоритмом. Сопоставим первому символу Неравенство гарантирует нам, что по каждому символу мы сможем выбрать кодовое слово так, что оно будет удаленно от остальных кодовых слов на расстояние большее, чем из в кодовое слово и вырежем из шар . Для второго символа повторим ту же процедуру, выберем ему кодовое слово . На каждом шаге будем выбирать для каждого символа некоторое слово , всего на выбор -ого слова доступны вариантов. , удовлетворяя неравенство . Таким образом построенный код исправляет ошибок. |
Примером кода для случая код Хэмминга.
является