2SAT — различия между версиями
Songx (обсуждение | вклад) м (→Первый пример) (Метки: правка с мобильного устройства, правка из мобильной версии) |
(→Алгоритм решения) |
||
| Строка 15: | Строка 15: | ||
Для того, чтобы данная задача <tex>\mathrm {2SAT}</tex> имела решение, необходимо и достаточно, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. <tex>(\overline x \to x) \wedge (x \to \overline x) </tex>. | Для того, чтобы данная задача <tex>\mathrm {2SAT}</tex> имела решение, необходимо и достаточно, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. <tex>(\overline x \to x) \wedge (x \to \overline x) </tex>. | ||
|proof= | |proof= | ||
| − | <tex>(\Rightarrow)</tex>Докажем | + | <tex>(\Rightarrow)</tex>Докажем необходимость: Пусть <tex>\mathrm {2SAT}</tex> имеет решение. Докажем, что не может быть такого, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> можно достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> можно достичь <tex> x </tex> одновременно. <tex>((\overline x \to x) \wedge (x \to \overline x)) </tex>. Тогда чтобы из <tex> \overline x </tex> достичь <tex> x </tex> <tex> (\overline x \to x </tex> было верным), <tex> x </tex> должен быть равен <tex> 1 </tex>. С другой стороны для того, чтобы из <tex> x </tex> достичь <tex> \overline x </tex> <tex> (x \to \overline x </tex> было верным), <tex> x </tex> должен быть равен 0. Отсюда следует противоречие. |
| − | <tex>(\Leftarrow)</tex>Докажем | + | <tex>(\Leftarrow)</tex>Докажем достаточность: Пусть для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. Докажем, что этого достаточно, чтобы <tex>\mathrm {2SAT}</tex> имело решение. Пусть из <tex> \overline x </tex> можно достичь <tex> x </tex>, но из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex>. Докажем, что из <tex> x </tex> не достижимо такой <tex> y </tex>, что из <tex> y </tex> достижимо <tex> \overline y </tex>. (т.е. <tex> x \to y \to \overline y\, (x = 1, y = 0)) </tex>. Если из <tex> x \to y </tex>, то <tex> \overline x \vee y </tex>, отсюда следует <tex> \overline y \to \overline x </tex>. Тогда <tex> x \to y \to \overline y \to \overline x </tex>. Следовательно <tex> x \to \overline x </tex>. Противоречие. |
}} | }} | ||
Версия 17:36, 27 сентября 2021
| Задача: |
| (2-satisfiability) выполнимость функции — задача распределения аргументов в булевой КНФ функции, записанной в виде 2-КНФ (КНФ Крома), таким образом, чтобы результат данной функции был равен . |
Содержание
Алгоритм решения
Рассмотрим любой дизъюнкт функции: . Несложно заметить, что это равнозначно записи .
Построим ориентированный граф, где вершинами будут аргументы и их отрицание, а ребрами будут ребра вида: и для каждого дизъюнкта функции .
| Теорема: |
Для того, чтобы данная задача имела решение, необходимо и достаточно, чтобы для любой переменной из вершины нельзя достичь и из вершины нельзя достичь одновременно. . |
| Доказательство: |
|
Докажем необходимость: Пусть имеет решение. Докажем, что не может быть такого, чтобы для любой переменной из вершины можно достичь и из вершины можно достичь одновременно. . Тогда чтобы из достичь было верным), должен быть равен . С другой стороны для того, чтобы из достичь было верным), должен быть равен 0. Отсюда следует противоречие. Докажем достаточность: Пусть для любой переменной из вершины нельзя достичь и из вершины нельзя достичь одновременно. Докажем, что этого достаточно, чтобы имело решение. Пусть из можно достичь , но из вершины нельзя достичь . Докажем, что из не достижимо такой , что из достижимо . (т.е. . Если из , то , отсюда следует . Тогда . Следовательно . Противоречие. |
Теперь мы можем собрать весь алгоритм воедино:
- Построим граф импликаций.
- Найдём в этом графе компоненты сильной связности за время , где — количество вершин в графе (удвоенное количество переменных), а — количество ребер графа (удвоенное количество дизъюнктов).
- Пусть — это номер компоненты сильной связности, которой принадлежит вершине . Проверим, что для каждой переменной вершины и лежат в разных компонентах, т.е. . Если это условие не выполняется, то вернуть решение не существует.
- Если , то переменной выбираем значение , иначе — .
Компоненты сильной связности найдем за , затем проверим каждую из переменных за . Следовательно асимптотика .
Примеры решения 2SAT
Первый пример
Рассмотрим следующую функцию:
Данная функция эквивалентна функции .
Построим ориентированный граф со следующими множествами вершинам и ребер: множество вершин множество ребер .
Рассмотрим в графе следующие пути:
- .
Т.к. , то .
Т.к. и , то .
Значения может быть любым, т.к. все вершины, из которых можно добраться в имеют значение ноль.
Ответ: или .
Второй пример
Рассмотрим следующую функцию:
Данная функция эквивалентна функции
Построим ориентированный граф со следующими множествами вершинам и ребер: множество вершин V = множество ребер .
Заметим следующий путь: .
Отсюда следует, что .
Следовательно по ранее доказанной теореме, у данной функции решений нет.
Ответ: Решений нет.
Использование 2SAT
Решение может потребоваться в следующих задачах:
- латинские квадраты[1],
- квазигруппы[2],
- числа Рамсея[3],
- система Штейнера[4],
- проектирование протоколов (пример: для сетевых коммуникаций),
- электронная коммерция (Электронные аукционы и автоматизированные брокеры,
- теории кодирования, криптографии,
- проектирование и тестирование лекарств (мед. препаратов).