Список заданий по продвинутым алгоритмам 2021 осень — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 52: Строка 52:
 
# В условиях предыдущей задачи докажите, что $\sum\limits_{i\ge 0}\left(d_i + d_i\log\frac{d_i+2m}{d_i}\right)\le n+n\log\frac{n+2m}{n}+2n$.
 
# В условиях предыдущей задачи докажите, что $\sum\limits_{i\ge 0}\left(d_i + d_i\log\frac{d_i+2m}{d_i}\right)\le n+n\log\frac{n+2m}{n}+2n$.
 
# Докажите, что $\sum\limits_{м}\lceil\log(1+|A(u)|)\rceil = O(n + m)$.
 
# Докажите, что $\sum\limits_{м}\lceil\log(1+|A(u)|)\rceil = O(n + m)$.
# Обозначим как $up[v]$ число, в котором $i$-й бит равен $1$, если в $A(v)$ есть путь, заканчивающийся на расстоянии $i$ от корня. Считайте, что вы можете решить задачу о $m$ запросах $LCA$ в дереве с $n$ вершинами за $O(n+m)$ (например, используя алгоритм Фарах-Колтона и Бендера, см https://www.ics.uci.edu/~eppstein/261/BenFar-LCA-00.pdf). Объясните, как посчитать $up[v]$ за время $O(n+m)$.
+
# Обозначим как $A[v]$ число, в котором $i$-й бит равен $1$, если в $A(v)$ есть путь, заканчивающийся на расстоянии $i$ от корня. Считайте, что вы можете решить задачу о $m$ запросах $LCA$ в дереве с $n$ вершинами за $O(n+m)$ (например, используя алгоритм Фарах-Колтона и Бендера, см https://www.ics.uci.edu/~eppstein/261/BenFar-LCA-00.pdf). Объясните, как посчитать $A[v]$ за время $O(n+m)$.
 +
# Назовем вершину $v$ большой, если $|A(v)| > \log n/\log\log n$ и маленькой в противном случае. Докажите, что число больших вершин не превышает $m \log\log n/\log n$. Указание: оцените число больших вершин на каждом уровне дерева. Отдельно рассмотрите большие вершины на нижних $\log\log n$ и на остальных уровнях.
 +
# Для вершины $v$, для которой $|A(v) = k$ будем хранить $B(v) = [l_1, l_2, \ldots, l_k]$ - список глубин самых тяжелых ребер на путях, проходящих через $v$, в порядке от самого длинного пути к самому короткому. Иначе говоря, пронумеруем пути из $A(v)$ в порядке возрастания глубины их верхней вершины. Тогда $l_i$ - расстояние от корня до ребра, которое является самым тяжелым на пути до некоторой вершины $u_i$, которая является верхним концом $i$-го пути. Числа $l_i$ называются тагами, длина тага $O(\log\log n)$. Докажите, что массив $B(v)$ отсортирован по неубыванию.
 +
# Пусть $p$ - родитель вершины $v$, как связаны массивы $B(p)$ и $B(v)$? Дайте подробное описание, используя, при необходимости, $A(p)$ и $A(v)$.
 +
# Для больших вершин $B(v)$ помещается в $O(\log\log n)$ машинных слово. Пусть родитель вершины также большой. Предложите алгоритм пересчета $B(v)$ через $B(p)$, $A[p]$ и $A[v]$ за $O(\log\log n)$, перед этим можно выполнить общий для всех вершин предподсчет за $O(n+m)$.
 +
# Обозначим как $bigp[v]$ максимальную глубину, на котором находится большой предок вершины $v$. Предложите алгоритм, как за построить массив $bigp$ за $O(n)$.
 +
# Для маленьких вершин $B(v)$ помещается в машинное слово, однако вместо списка $B(v)$ будем хранить вспомогательный список $C(v)$, устроенный так. Если самое тяжелое ребро на $i$-м по глубине пути из $A(v)$ находится ниже, чем $bigp[v]$, то будем хранить просто $l_i$. Иначе будем хранить $z_i$ - номер $l_i$ в $B(bigp[v])$. Обозначим упакованный в машинное слово список $C(v)$ за $C[v]$. Предложите алгоритм пересчета $С[v]$ за $O(1)$, перед этим можно выполнить общий для всех вершин предподсчет за $O(n+m)$. Вы можете использовать посчитанные для родителей и предков $C[u]$, $B(u)$, $A[u]$, $bigp[u]$.
 +
# Объедините результаты всех предыдущих заданий, чтобы получить алгоритм обработки $m$ запросов поиска максимального ребра на пути между двумя вершинами на дереве за $O(n+m)$.

Версия 13:46, 24 октября 2021

  1. $1 | p_i=1 | L_{max}$.
  2. $1 | r_i, d_i=d | L_{max}$.
  3. $1 | prec, r_i, p_i=1 | L_{max}$.
  4. Рассмотрим задачу $1 | p_i = 1, d_i | -$. Докажите, что подмножества работ, которые можно выполнить, образуют семейство независимых множеств некоторого матроида.
  5. $1 | p_i = 1, d_i | \sum w_iU_i$. Время $O(n\log n)$.
  6. $1 | p_i = 1, d_i, r_i | \sum U_i$. Время - полином от $n$.
  7. $1 | p_i = 1, d_i, r_i | \sum w_iU_i$. Время - полином от $n$.
  8. $1 | p_i = p, pmtn, r_i | \sum w_iU_i$ за $O(n^{10})$.
  9. $1 || \sum U_i$
  10. $1 | r_i, p_i = p | \sum w_iC_i$ за $O(n^7)$
  11. Обозначение outtree означает, что граф зависимостей представляет собой исходящее дерево: каджая работа зависит не более чем от одной другой. $1 | outtree | \sum w_iC_i$
  12. Обозначение intree означает, что граф зависимостей представляет собой входящее дерево: от каждой работы зависит не более одной другой. $1 | intree | \sum w_iC_i$
  13. $P | pmtn, r_i | C_{max}$
  14. $P | pmtn, r_i | L_{max}$
  15. $Q | pmtn, r_i | C_{max}$
  16. $P | p_i = p, r_i, d_i | \sum C_i$ за $O(n^3 \log n)$ (бонус за $O(n^3 \log\log n)$)
  17. $P | p_i = 1 | \sum w_iU_i$ - доведите доказательство с пары до конца
  18. $P | p_i = 1 | \sum w_iC_i$
  19. $P | p_i = 1, pmtn | \sum w_iC_i$
  20. $Q | pmtn | \sum C_i$
  21. $Q | pmtn | \sum f_i$ (напомним, что f_i - произвольная неубывающая функция, может быть своя у каждой работы)
  22. $Q | pmtn | f_{max}$
  23. $P2 | p_i = 1, prec, r_i | \sum C_i$ за $O(n^9)$
  24. Сведите задачу $R|pmtn|C_{max}$ к задаче линейного программирования.
  25. $P|intree, p_i=1|L_{max}$
  26. $F | p_{ij} = 1 | \sum C_i$
  27. $F2 | pmtn | C_{max}$
  28. $F | p_{ij} = 1 | \sum U_i$
  29. $F | p_{ij} = 1 | \sum w_iU_i$
  30. $O | p_{ij} = 1 | C_{max}$
  31. $O | p_{ij} = 1 | \sum C_i$
  32. $O | p_{ij} = 1 | \sum w_iC_i$
  33. $O | p_{ij} = 1, d_i | -$
  34. $O | p_{ij} = 1 | \sum U_i$
  35. $O | p_{ij} = 1 | \sum w_iU_i$
  36. $O | p_{ij} = 1, r_i | C_{max}$
  37. $O2 | p_{ij} = 1, prec | \sum C_i$
  38. Обозначим как $BP(n)$ время умножения булевых матриц размера $n \times n$ над $\vee, \wedge$. Обозначим как $MM(n)$ время умножения целочисленных матриц размера $n \times n$ над $+, \times$. Докажите, что $BP(n) = O(MM(n))$.
  39. Докажите, что можно найти транзитивное замыкание графа за время $O(BP(n))$.
  40. Пусть $A$ и $B$ - матрицы размера $n \times n$. Пусть $R \subset \{1, 2, \ldots, n\}$, $|R|=r$. Обозначим как $A^R$ матрицу, которая получается из $A$ удалением всех столбцов, кроме столбцов из множества $R$. Аналогично, обозначим как $B_R$ матрицу, которая получается из $B$ удалением всех строк, кроме строк из множества $R$. Докажите, что произведение матриц $A^R\cdot B_R$ может быть найдено за время $O((n/r)^2 MM(r))$, где $MM(r)$ - время умножения матриц размером $r\times r$.
  41. Пусть $MM(n)=2+\varepsilon$, $\varepsilon>0$. Модифицируйте алгоритм построения BPWM, чтобы он работал за $MM(n) \log n$. Почему эта идея не сработает, если $MM(n) = O(n^2)$?
  42. Докажите лемму с лекции про то, что если в урне $n$ шаров, из которых $w$ белых и $n/2\le wr \le n$, а событие $A$ означает, что из $r$ наугад выбранных из урны шаров оказался ровно один белый, то $P(A) \ge 1/2e$.
  43. Сохраняется ли вероятность из предыдущего задания, если шары после вытаскивания возвращаются в урну? Если нет, то можно ли получить аналогичную оценку?
  44. Нижняя оценка на сумму длин путей. Докажите, что можно построить граф, в котором $\Omega(n^2)$ пар вершин, расстояние между которыми $\Omega(n)$.
  45. Известно, что у учителя есть $2^k$ яблок для некоторого целого неотрицательного $k$. На глазах у студентов он съедает одно яблоко, а остальное раздает ученикам А и В, чтобы ни один из них не видел, сколько получает другой. А и В не знают числа $k$. Они могут показать друг другу по одному знаку из трёх возможных: почесать голову правой, левой или обеими руками. К удивлению учителя, ученики всегда знают, кто получил больше яблок или что учитель съел единственное яблоко сам. Как такое возможно?
  46. Вероятностный алгоритм поиска минимума некоторый функции от входных данных размера $n$ работает за полином $p(n)$ и дает верный ответ с вероятностью $1/2$. Как найти верный ответ с вероятностью $99/100$ за полином от $n$?
  47. Вероятностный алгоритм проверки некоторого предиката от входных данных размера $n$ работает за полином $p(n)$ и дает верный ответ с вероятностью $1/2$. Можно ли найти верный ответ с вероятностью $99/100$ за полином от $n$?
  48. Вероятностный алгоритм проверки некоторого предиката от входных данных размера $n$ работает за полином $p(n)$ и дает верный ответ с вероятностью $2/3$. Как найти верный ответ с вероятностью $99/100$ за полином от $n$?
  49. В алгоритме Кинг с лекции обозначим как $f(u)$ лист, которая получается в ветвящемся дереве $T'$ из вершины $u$ в исходном дереве $T$. Докажите, что если вес максимального ребра на пути из $u$ в $v$ в $T$ равен $x$, а вес максимального ребра на пути из $f(u)$ в $f(v)$ в $T'$ равен $x'$, то $x \ge x'$.
  50. В условиях предыдущей задачи докажите, что то $x \le x'$.
  51. Рассмотрим ветвящееся дерево, пусть в нем $n$ вершин. Пусть есть $m$ запросов на пары листьев, для которых необходимо найти максимальное ребро на пути. Разобьем каждый запрос на два запроса на вертикальном пути до $LCA$ этих листьев, таким образом имеем $2m$ вертикальных путей. Для вершины $v$ обозначим как $A(v)$ множество вертикальных путей, проходящих через $v$. Обозначим как $D_i$ множество вершин на расстоянии $i$ от корня, как $d_i$ число вершин на расстоянии $i$ от корня ($d_i=|D_i|$). Докажите, что $\sum\limits_{u\in D_i}\lceil\log(1+|A(u)|)\rceil<\sum\limits_{u\in D_i}\left(1+\log(1+|A(u)|)\right)\le d_i+d_i \log\frac{d_i+2m}{d_i}$.
  52. В условиях предыдущей задачи докажите, что $\sum\limits_{i\ge 0}\left(d_i + d_i\log\frac{d_i+2m}{d_i}\right)\le n+n\log\frac{n+2m}{n}+2n$.
  53. Докажите, что $\sum\limits_{м}\lceil\log(1+|A(u)|)\rceil = O(n + m)$.
  54. Обозначим как $A[v]$ число, в котором $i$-й бит равен $1$, если в $A(v)$ есть путь, заканчивающийся на расстоянии $i$ от корня. Считайте, что вы можете решить задачу о $m$ запросах $LCA$ в дереве с $n$ вершинами за $O(n+m)$ (например, используя алгоритм Фарах-Колтона и Бендера, см https://www.ics.uci.edu/~eppstein/261/BenFar-LCA-00.pdf). Объясните, как посчитать $A[v]$ за время $O(n+m)$.
  55. Назовем вершину $v$ большой, если $|A(v)| > \log n/\log\log n$ и маленькой в противном случае. Докажите, что число больших вершин не превышает $m \log\log n/\log n$. Указание: оцените число больших вершин на каждом уровне дерева. Отдельно рассмотрите большие вершины на нижних $\log\log n$ и на остальных уровнях.
  56. Для вершины $v$, для которой $|A(v) = k$ будем хранить $B(v) = [l_1, l_2, \ldots, l_k]$ - список глубин самых тяжелых ребер на путях, проходящих через $v$, в порядке от самого длинного пути к самому короткому. Иначе говоря, пронумеруем пути из $A(v)$ в порядке возрастания глубины их верхней вершины. Тогда $l_i$ - расстояние от корня до ребра, которое является самым тяжелым на пути до некоторой вершины $u_i$, которая является верхним концом $i$-го пути. Числа $l_i$ называются тагами, длина тага $O(\log\log n)$. Докажите, что массив $B(v)$ отсортирован по неубыванию.
  57. Пусть $p$ - родитель вершины $v$, как связаны массивы $B(p)$ и $B(v)$? Дайте подробное описание, используя, при необходимости, $A(p)$ и $A(v)$.
  58. Для больших вершин $B(v)$ помещается в $O(\log\log n)$ машинных слово. Пусть родитель вершины также большой. Предложите алгоритм пересчета $B(v)$ через $B(p)$, $A[p]$ и $A[v]$ за $O(\log\log n)$, перед этим можно выполнить общий для всех вершин предподсчет за $O(n+m)$.
  59. Обозначим как $bigp[v]$ максимальную глубину, на котором находится большой предок вершины $v$. Предложите алгоритм, как за построить массив $bigp$ за $O(n)$.
  60. Для маленьких вершин $B(v)$ помещается в машинное слово, однако вместо списка $B(v)$ будем хранить вспомогательный список $C(v)$, устроенный так. Если самое тяжелое ребро на $i$-м по глубине пути из $A(v)$ находится ниже, чем $bigp[v]$, то будем хранить просто $l_i$. Иначе будем хранить $z_i$ - номер $l_i$ в $B(bigp[v])$. Обозначим упакованный в машинное слово список $C(v)$ за $C[v]$. Предложите алгоритм пересчета $С[v]$ за $O(1)$, перед этим можно выполнить общий для всех вершин предподсчет за $O(n+m)$. Вы можете использовать посчитанные для родителей и предков $C[u]$, $B(u)$, $A[u]$, $bigp[u]$.
  61. Объедините результаты всех предыдущих заданий, чтобы получить алгоритм обработки $m$ запросов поиска максимального ребра на пути между двумя вершинами на дереве за $O(n+m)$.