Изменения

Перейти к: навигация, поиск

Участник:Feorge

169 байт добавлено, 20:17, 12 ноября 2021
Нет описания правки
== Определение и устранение ошибок в общем случае ==Пусть <tex>B = \{0, 1\}</tex> — булевое множество. Рассмотрим <tex>B^n</tex> и [[Расстояние Хэмминга#def1|расстояние Хемминга]] <tex>H(x,y)</tex>. Пусть <tex>c:\Sigma \to B^n</tex> {{---}} разделяемый код постоянной длины. Обозначим <tex>\min\limits_{\substack{x,y\in \Sigma\\ x\neq y}}H(c(x), c(y)) = d(c)</tex>. ==Коды, исправляющие и обнаруживающие ошибки=={{Определение|neat = 1
|definition=
Код <tex>c</tex> ''обнаруживает'' <tex>k</tex> ошибок, если <tex>d(c) > k</tex>.
}} <br />
{{Определение
|neat = 1
|definition=
Код <tex>c</tex> ''исправляет'' <tex>k</tex> ошибок, если <tex>d(c) > 2k</tex>.
}} <br />
{{Утверждение
|statement= Код, исправляющий <tex>k</tex> ошибок, обнаруживает <tex>2k</tex> ошибок.
Для составления оценок снизу и сверху на параметры кодирования нам понадобится понятие шара.
{{Определение
|neat = 1
|definition=
Булев шар {{---}} подмножество <tex>B^n</tex> вида <tex> \{ y : H(x,y) \leqslant r\}</tex>. <tex>x</tex> называется его центром, <tex>r</tex> {{---}} радиусом. Булев шар с центром <tex>x</tex> и радиусом <tex>r</tex> обознчается <tex>S(x,r)</tex>.
}} <br />
{{Определение
|neat= 1
|definition=
Обьёмом шара <tex>S(x,r)</tex> в <tex>B^n</tex> называется величина <tex>|S(x,r)|</tex>.
Обьём шара радиуса <tex>r</tex> в <tex>B^n</tex> обозначается <tex>V(n,r)</tex>.
}} <br />
{{Утверждение
|statement= Обьём шара не зависит от его центра.
Допустим, <tex>x, y</tex> такие, что <tex>x \neq y</tex> и <tex>S(c(x), k) \cap S(c(y), k)\neq \emptyset</tex>, т.е существует <tex>z</tex>, такой что <tex>H(c(x), z) \leqslant k</tex> и <tex>H(c(y), z) \leqslant k</tex>. Тогда по неравенству треугольника <tex>H(c(x), c(y)) \leqslant 2k</tex>. Это противоречит тому, что <tex>d(c)>2k</tex>.
}}
 
== Определение и устранение ошибок в общем случае ==
Пусть <tex>\Sigma</tex> &mdash; исходный алфавит, <tex>c: \Sigma \to B^m</tex> &mdash; кодирование, <tex>B=(0,1)</tex>
 
<tex>d: B^m \times B^m \to \mathbb{R}</tex> &mdash; [[расстояние Хэмминга]] между двумя кодами. <br>
 
Код, <tex>c: \Sigma \to B^m</tex> может исправлять <math>~[</math><tex dpi = 150> {d_0-1}\over{2}</tex><math>~]</math> и обнаруживать <tex>[d_0-1]</tex> ошибок. Действительно, при любом натуральном количестве допустимых ошибок <tex>r</tex> любоое кодовое слово <tex>S</tex> образует вокруг себя проколотый шар таких строк <tex>S_i</tex>, что <tex>0<d(S,S_i)\leqslant r</tex>. Если этот шар не содержит других кодов (что выполняется при <tex>r<d_0</tex>) , то можно утверждать, что если в него попадает строка, то она ошибочна. Если шары всех кодов не пересекаются (что выполняется при <tex dpi = 150>r \leqslant {{d_0-1}\over{2}} </tex>), то попавшую в шар строку <tex>S_i</tex> можно считать ошибочной и исправить на центр шара &mdash; строку <tex>S</tex>.<br>
[[Файл:Ham.png|350px]]
== Граница Хэмминга, граница Гильберта ==
|statement=
Если выполнено неравенство <tex> mV(n,2k) \leqslant 2^n</tex>, то существует код <tex>c:\Sigma \to B^n</tex> для <tex>m</tex>-символьного алфавита <tex>\Sigma </tex>, исправляющий <tex>k</tex> ошибок.
|proof=Построим этот код алгоритмом. Сопоставим первому символу <tex>x_1</tex> из <tex>\Sigma</tex> в <tex>B^n</tex> кодовое слово <tex>c(x_1)\in B^n</tex> и вырежем из <tex>B^n</tex> шар <tex>S(x_1,2k)</tex>. Для второго символа <tex>x_2</tex> повторим ту же процедуру, выберем ему кодовое слово <tex>c(x_2)\in B^n \setminus S(x_1, 2k)</tex>. На каждом шаге будем выбирать для каждого символа <tex>x_{i+1}</tex> некоторое слово <tex>c(x_{i+1}) \in B^n \setminus \bigcup_{j=1}^{i} S(x_j, 2k) </tex>, всего на выбор <tex>i+1</tex>-ого слова доступны <tex>2^n - iV(n,k) \geqslant V(n,k)</tex> вариантов.Неравенство гарантирует нам, что по каждому символу мы сможем выбрать кодовое слово так, что оно будет удаленно от остальных кодовых слов на расстояние большее, чем <tex>2k</tex>, удовлетворяя неравенство <tex>d(c)>2k</tex>. Таким образом построенный код исправляет <tex>k</tex> ошибок.
}}
Примером кода для случая <tex>k=1</tex> является [[Избыточное кодирование, код Хэмминга#def1]|код Хэмминга]].
Анонимный участник

Навигация