Зависимости соединения и пятая нормальная форма — различия между версиями
(Новая страница: «== Зависимость соединения == === Множественная декомпозиция === Рассмотрим отношение и его д…») |
(нет различий)
|
Версия 19:25, 8 декабря 2021
Зависимость соединения
Множественная декомпозиция
Рассмотрим отношение и его декомпозицию:
Course | Lecturer | Group |
---|---|---|
СУБД | Корнеев Г. А. | M3438 |
СУБД | Корнеев Г. А. | M3439 |
Мат.ан. | Кохась К. П. | M3237 |
Мат.ан. | Виноградов О. Л. | M3239 |
Java | Корнеев Г. А. | M3239 |
Course | Lecturer |
---|---|
СУБД | Корнеев Г. А. |
СУБД | Корнеев Г. А. |
Мат.ан. | Кохась К. П. |
Мат.ан. | Виноградов О. Л. |
Java | Корнеев Г. А. |
Course | Group |
---|---|
СУБД | M3438 |
СУБД | M3439 |
Мат.ан. | M3237 |
Мат.ан. | M3239 |
Java | M3239 |
Lecturer | Group |
---|---|
Корнеев Г. А. | M3438 |
Корнеев Г. А. | M3439 |
Кохась К. П. | M3237 |
Виноградов О. Л. | M3239 |
Корнеев Г. А. | M3239 |
Тогда необходимо задать ограничения для обеспечения корректности, то есть:
Если
- Лектор $L$ читает курс $C$
- Лектор L читает группе $G$
- Группа $G$ слушает курс $C$
То лектор $L$ читает курс $C$ группе $G$.
При этом есть все 3 вида аномалии: вставки, удаления и обновления.
Определение: |
В отношении есть зависимость соединения | тогда и тогда тогда, когда соответствующая декомпозиция корректна:
Теорема Фейгина в терминах зависимости соединения будет выглядеть следующим образом:
Для
Определение: |
Тривиальные зависимости соединения $-$ зависимости соединения, у которых одно из отношений, на которые мы проецируем, совпадает с исходным: |
Пятая нормальная форма (Проекционно-соединительная)
Определение: |
Отношение находится в пятой нормальной форме тогда и только тогда, когда для каждой нетривиальной ЗС | каждое $X_{i} -$ надключ.
Утверждение: |
Если отношение находится в 5НФ, то оно находится в 4НФ. |
По теореме Фейгина | . В этой многозначной зависимости $X -$ надключ. Значит, отношение находится в 4НФ.
Формально, для приведения к 5 нормальной форме необходимо найти все зависимости соединения, однако это достаточно сложно. На практике ЗС, не являющиеся МЗ, встречаются редко. Обычно это можно выяснить с помощью кольцевых ограничений:
Если
- $\ldots$
То